The frequency and size of typhoon and local severe rainfall are increasing due to the climate change and the damage also increasing from typhoon and severe rainfall. The flood forecasting and warning system to reduce the damage from typhoon and severe rainfall needs forecasted rainfall using radar data and short-term rainfall forecasting model. For this reason, this study examined the applicability of short-term rainfall forecast using translation model with weather radar data to point out that the utilization of flood forecasting in Korea. This study estimated the radar rainfall using Least-square fitting method and estimated rainfall was used as initial field of translation model. The translation model have verified accuracy of forecasted radar rainfall through the comparison of forecasted radar rainfall and observed rainfall quantitatively and qualitatively. Almost case studies showed that accuracy is over 0.6 within 4 hours leading time and mean of correlation coefficient is over 0.5 within 1 hours leading time in Kwanak and Jindo radar site. And, as the increasing the leading time, the forecast accuracy of precipitation decreased. The results of the calculated Mean Area Precipitation (MAP) showed forecast rainfall tend to be underestimated than observed rainfall but the correlation coefficient more than 0.5. Therefore it showed that translation model could be accurately predicted the rainfall relatively. The present results indicate that possibility of translation model application of Korea just within 2 hours leading forecasted rainfall.
The objective of this study is to explore the applicability of very short-range-forecast rainfall for the early warning of mud-debris flows. An artificial neural network was applied to use the very short-range-forecast rainfall data. The neural network is learned by using the relationship between the radar and the AWS, and forecasted rainfall is estimated by replacing the radar rainfall with the MAPLE data as the very short-range-forecast rainfall data. The applicability of forecasted rainfall by the MAPLE was compared with the AWS rainfall at the test-bed using the rainfall criteria for cumulative rainfall of 6hr, 12hr, and 24hr respectively. As a result, it was confirmed that forecasted rainfall using the MAPLE can be issued prior to the AWS warning.
The objective of this study is to assess Sejong University River Forecast (SURF) model which consists of a continuous rainfall-runoff model and measured streamflow assimilation using ensemble Kalman filter technique for streamflow forecast on Nakdong river basin. The study area is divided into 43 subbasins. The forecasted streamflows are evaluated at 12 measurement sites during flood season from 2006 to 2007. The forecasted ones are improved due to the impact of the measured streamflows assimilation. In effectiveness indices corresponding to 1~5 h forecast lead times, the accuracy of the forecasted streamflows with the assimilation approach is improved by 46.2~30.1% compared with that using only the rainfall-runoff model. The mean normalized absolute error of forecasted peak flow without and with data assimilation approach in entering 50% of the measured rainfall, respectively, the accuracy of the latter is improved about 40% than that of the former. From these results, SURF model is able to be used as a real-time river forecast model.
This paper presents the evaluation of the impact of climate change on water resources and yield capacity of Asa and Kampe reservoirs. Trend analysis of mean temperature, runoff, rainfall and evapotranspiration was carried out using Mann Kendall and Sen's slope, while runoff was modeled as a function of temperature, rainfall and evapotranspiration using Artificial Neural Networks (ANN). Rainfall and runoff exhibited positive trends at the two dam sites and their upstream while forecasted ten-year runoff displayed increasing positive trend which indicates high reservoir inflow. The reservoir yield capacity estimated with the ANN forecasted runoff was higher by about 38% and 17% compared to that obtained with historical runoff at Asa and Kampe respectively. This is an indication that there is tendency for water resources of the reservoir to increase and thus more water will be available for water supply and irrigation to ensure food security.
Magazine of the Korean Society of Agricultural Engineers
/
v.36
no.2
/
pp.44-55
/
1994
This paper describes the development of real-time irrigation reservoir operation models that adequately allocate available water resources for paddy rice irrigation. Water requirement deficiency index(WRDI) was proposed as a guide to evaluate the operational performance of release schemes by comparing accumulated differences between daily release requirements for irrigated areas and actual release amounts. Seven reservoir release rules were developed, which are constant release rate method (CRR), mean storage curve method(MSC), frequency analysis method of reservoir storage rate(FAS), storage requirement curve method(SRC), constant optimal storage rate method (COS), ten-day optimal storage rate method(TOS), and release optimization method(ROM). Long-term forecasting reservoir operation model(LFROM) was formulated to find an optimal release scheme which minimizes WRDIs with long-term weather generation. Rainfall sequences, rainfall amount, and evaporation amount throughout the growing season were to be forecasted and the results used as an input for the model. And short-term forecasting reservoir operation model(SFROM) was developed to find an optimal release scheme which minimizes WRDIs with short-term weather forecasts. The model uses rainfall sequences forecasted by the weather service, and uses rainfall and evaporation amounts generated according to rainfall sequences.
This study generated the radar-based forecasted rainfall using spatial-scale decomposition method (SCDM) and evaluated the hydrological applicability with forecasted rainfall by KMA (MAPLE, KONOS) in terms of urban flood forecasting. SCDM is to separate the small-scale field (convective cell) and large-scale field (straitform cell) from radar rainfield. And each separated field is forecasted by translation model and storm tracker nowcasting model for improvement of QPF accuracy. As the evaluated results of various QPF for three rainfall events in Seoul and Metropolitan area, proposed method showed better prediction accuracy than MAPLE and KONOS considering the simplicity of the methodology. In addition, this study assessed the urban hydrological applicability for Gangnam basin. As the results, KONOS simulated the peak of water depth more accurately than MAPLE and SCDM, however cannot simulated the timeseries pattern of water depth. In the case of SCDM, the quantitative error was larger than observed water depth, but the simulated pattern was similar to observation. The SCDM will be useful information for flood forecasting if quantitative accuracy is improved through the adjustment technique and blending with NWP.
Lee, Hyunji;Jun, Sang Min;Hwang, Soon Ho;Choi, Soon-Kun;Park, Jihoon;Kang, Moon Seong
Journal of The Korean Society of Agricultural Engineers
/
v.62
no.1
/
pp.17-27
/
2020
The objective of this study was to assess the flood probability based on temporal distribution of forecasted-rainfall in Cheongmicheon watershed. In this study, 6-hr rainfalls were disaggregated into hourly rainfall using the Multiplicative Random Cascade (MRC) model, which is a stochastic rainfall time disaggregation model and it was repeated 100 times to make 100 rainfalls for each storm event. The watershed runoff was estimated using the Clark unit hydrograph method with disaggregated rainfall and watershed characteristics. Using the peak discharges of the simulated hydrographs, the probability distribution was determined and parameters were estimated. Using the parameters, the probability density function is shown and the flood probability is calculated by comparing with the design flood of Cheongmicheon watershed. The flood probability results differed for various values of rainfall and rainfall duration. In addition, the flood probability calculated in this study was compared with the actual flood damage in Cheongmicheon watershed (R2 = 0.7). Further, this study results could be used for flood forecasting.
Journal of the Korean Society of Hazard Mitigation
/
v.11
no.3
/
pp.17-28
/
2011
This study applied the Kalman Filter for real-time forecasting the G/R (ground rain gauge rainfall/radar rainfall) ratio to correct the mean field bias of the very-short-range-forecast (VSRF) rainfall. The MAPLE-forecasted rainfall was used as the VSRF rainfall, also the methodology for deciding the G/R ratio was improved by evaluating the change of G/R ratio characteristics depending on the threshold and accumulation time. This analysis was done for the inland, mountain, and coastal regions, separately, for their comparison. As the results, more stable G/R ratio could be estimated by applying the threshold and accumulation time, whose forecasting accuracy could also be secured. The accuracy of the corrected rainfall forecasting by the forecasted G/R ratio was the best in the inland region but the worst in the coastal region.
Mahmud, Ishtiak;Bari, Sheikh Hefzul;Rahman, M. Tauhid Ur
Environmental Engineering Research
/
v.22
no.2
/
pp.162-168
/
2017
Rainfall is one of the most important phenomena of the natural system. In Bangladesh, agriculture largely depends on the intensity and variability of rainfall. Therefore, an early indication of possible rainfall can help to solve several problems related to agriculture, climate change and natural hazards like flood and drought. Rainfall forecasting could play a significant role in the planning and management of water resource systems also. In this study, univariate Seasonal Autoregressive Integrated Moving Average (SARIMA) model was used to forecast monthly rainfall for twelve months lead-time for thirty rainfall stations of Bangladesh. The best SARIMA model was chosen based on the RMSE and normalized BIC criteria. A validation check for each station was performed on residual series. Residuals were found white noise at almost all stations. Besides, lack of fit test and normalized BIC confirms all the models were fitted satisfactorily. The predicted results from the selected models were compared with the observed data to determine prediction precision. We found that selected models predicted monthly rainfall with a reasonable accuracy. Therefore, year-long rainfall can be forecasted using these models.
Kim, Daeha;Yoon, Sun-Kwon;Kang, Moon Seong;Lee, Kyung-do
Journal of The Korean Society of Agricultural Engineers
/
v.58
no.5
/
pp.91-99
/
2016
High resolution rainfall data at 1-hour or a finer scale are essential for reliable flood analysis and forecasting; nevertheless, many observations, forecasts, and climate projections are still given at coarse temporal resolutions. This study aims to evaluate a chaotic method for disaggregation of 6-hour rainfall data sets so as to apply operational 6-hour rainfall forecasts of the Korean Meteorological Association to flood models. We computed parameters of a state-of-the-art multiplicative random cascade model with two combinations of cascades, namely uniform splitting and diversion, using rainfall observations at Seoul station, and compared statistical performance. We additionally disaggregated 6-hour rainfall time series at 58 stations with the uniform splitting and evaluated temporal transferability of the parameters and changes in multifractal properties. Results showed that the uniform splitting outperformed the diversion in reproduction of observed statistics, and hence is better to be used for disaggregation of 6-hour rainfall forecasts. We also found that multifractal properties of rainfall observations has adequate temporal consistency with an indication of gradually increasing rainfall intensity across South Korea.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.