• Title/Summary/Keyword: Forecast method of future demand market

Search Result 10, Processing Time 0.033 seconds

Forecasting methodology of future demand market (미래 수요시장의 예측 방법론)

  • Oh, Sang-young
    • Journal of Digital Convergence
    • /
    • v.18 no.2
    • /
    • pp.205-211
    • /
    • 2020
  • The method of predicting the future may be predicted by technical characteristics or technical performance. Therefore, technology prediction is used in the field of strategic research that can produce economic and social benefits. In this study, we predicted the future market through the study of how to predict the future with these technical characteristics. The future prediction method was studied through the prediction of the time when the market occupied according to the demand of special product. For forecasting market demand, we proposed the future forecasting model through comparison of representative quantitative analysis methods such as CAGR model, BASS model, Logistic model and Gompertz Growth Curve. This study combines Rogers' theory of innovation diffusion to predict when products will spread to the market. As a result of the research, we developed a methodology to predict when a particular product will mature in the future market through the spread of various factors for the special product to occupy the market. However, there are limitations in reducing errors in expert judgment to predict the market.

Forecasting Multi-Generation Diffusion Demand based on System Dynamics : A Case for Forecasting Mobile Subscription Demand (시스템다이내믹스 기반의 다세대 확산 수요 예측 : 이동통신 가입자 수요 예측 적용사례)

  • Song, Hee Seok;kim, Jae Kyung
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.2
    • /
    • pp.81-96
    • /
    • 2017
  • Forecasting long-term mobile service demand is inevitable to establish an effective frequency management policy despite the lack of reliability of forecast results. The statistical forecasting method has limitations in analyzing how the forecasting result changes when the scenario for various drivers such as consumer usage pattern or market structure for mobile communication service is changed. In this study, we propose a dynamic model of the mobile communication service market using system dynamics technique and forecast the future demand for long-term mobile communication subscriber based on the dynamic model, and also experiment on the change pattern of subscriber demand under various scenarios.

Forecasting Demand for the PCS Resale Service with Survey Data in Korea (설문자료를 이용한 국내 PCS 재판매 서비스 수요예측)

  • Jun, Duk-Bin;Park, Myoung-Hwan;Ahn, Jae-Hyeon;Kim, Gye-Hong;Kim, Seon-Kyoung;Park, Dae-Keun;Park, Yoon-Seo;Cha, Kyung-Cheon;Lee, Jung-Jin
    • IE interfaces
    • /
    • v.13 no.4
    • /
    • pp.619-626
    • /
    • 2000
  • In this paper, we place the focus on suggesting a method of forecasting demand for PCS resale service with survey data in Korea. It is important for the service provider to forecast the diffusion process when designing marketing strategies and analyzing the costs and benefits. For the reason, we conduct a survey of three groups composed of non-subscribers, cellular subscribers, and PCS subscribers in order to forecast the demand according to several possible scenarios and business strategies. We consider the survey item that is measured by multiple point scales in response to a question if he would subscribe to the mobile telephone service in the future. We propose a method to forecast the size of market potential by classifying each individual into the two extreme groups, that is, yes or no. Then, by integrating survey data and historical data, we forecast the demand for PCS resale service that varies according to scenarios and strategies. From the results, we can find several implications for the provider of PCS resale service.

  • PDF

The Simulation and Forecast Model for Human Resources of Semiconductor Wafer Fab Operation

  • Tzeng, Gwo-Hshiung;Chang, Chun-Yen;Lo, Mei-Chen
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.1
    • /
    • pp.47-53
    • /
    • 2005
  • The efficiency of fabrication (fab) operation is one of the key factors in order for a semiconductor manufacturing company to stay competitive. Optimization of manpower and forecasting manpower needs in a modern fab is an essential part of the future strategic planing and a very important to the operational efficiency. As the semiconductor manufacturing technology has entered the 8-inch wafer era, the complexity of fab operation increases with the increase of wafer size. The wafer handling method has evolved from manual mode in 6-inch wafer fab to semi-automated or fully automated factory in 8-inch and 12-inch wafer fab. The distribution of manpower requirement in each specialty varied as the trend of fab operation goes for downsizing manpower with automation and outsourcing maintenance work. This paper is to study the specialty distribution of manpower from the requirement in a typical 6-inch, 8-inch to 12-inch wafer fab. The human resource planning in today’s fab operation shall consider many factors, which include the stability of technical talents. This empirical study mainly focuses on the human resource planning, the manpower distribution of specialty structure and the forecast model of internal demand/supply in current semiconductor manufacturing company. Considering the market fluctuation with the demand of varied products and the advance in process technology, the study is to design a headcount forecast model based on current manpower planning for direct labour (DL) and indirect labour (IDL) in Taiwan’s fab. The model can be used to forecast the future manpower requirement on each specialty for the strategic planning of human resource to serve the development of the industry.

A study on market-production model building for small bar steels (소봉제품의 시장생산 모형 구축에 관한 연구)

  • 김수홍;유정빈
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.139-145
    • /
    • 1996
  • A forecast on the past output data sets of small bar steels is very important information to make a decision on the future production quantities. In many cases, however, it has been mainly determined by experience (or rule of thumb). In this paper, past basic data sets of each small bar steels are statistically analyzed by some graphical and statistical forecasting methods. This work is mainly done by SAS. Among various quantitative forecasting methods in SAS, STEPAR forecasting method was best performed to the above data sets. By the method, the future production quantities of each small bar steels are forecasted. As a result of this statistical analysis, 95% confidence intervals for future forecast quantities are very wide. To improve this problem, a suitable systematic database system, integrated management system of demand-production-inventory and integrated computer system should be required.

  • PDF

A System Dynamics Approach for Valuing Nuclear Power Technology (System Dynamics를 이용한 원자력발전의 기술가치 평가)

  • Lee, Yong-Suk
    • Korean System Dynamics Review
    • /
    • v.7 no.2
    • /
    • pp.57-80
    • /
    • 2006
  • Nuclear technology made a great contribution to the national economy and society by localization of nuclear power plant design, and by stabilization of electricity price, etc. It is very important to conduct the retrospective analysis for the nuclear technology contribution to the national economy and society, but it is more important to conduct prospective analysis for the nuclear technology contribution. The term "technology value" is often used in the prospective analysis to value the result of technology development. There are various definitions of technology value, but generally it means the increment of future revenue or the reduction of future cost by technology development. These technology valuation methods are widely used in various fields (information technology or energy technology, etc). The main objective of this research is to develop valuation methodology that represents unique characteristics of nuclear power technology. The valuation methodology that incorporates market share changes of generation technologies was developed. The technology valuation model which consists of five modules (electricity demand forecast module, technology development module, market share module, electricity generation module, total cost module) to incorporate market share changes of generation technologies was developed. The nuclear power technology value assessed by this technology valuation model was 3 times more than the value assessed by the conventional method. So it was confirmed that it is very important to incorporates market share changes of generation technologies. The valuation results of nuclear power technology in this study can be used as policy data for ensuring the benefits of nuclear power R&D (Research and Development) investment.

  • PDF

A study on the evaluation of and demand forecasting for real estate using simple additive weighting model: The case of clothing stores for babies and children in the Bundang area

  • Ryu, Tae-Chang;Lee, Sun-Young
    • Journal of Distribution Science
    • /
    • v.10 no.11
    • /
    • pp.31-37
    • /
    • 2012
  • Purpose - This study was conducted under the assumption that brand A, a store of company Z of Pangyo, with a new store at Pangyo station is targeting the Bundang-gu area of the newly developed city of Seongnam. Research design, data, methodology - As a result of demand forecasting using geometric series models, an extrapolation of past trends provided the coefficient estimates, without utilizing regression analysis on a constant increase in children's wear, for which the population size and estimated parameter were required. Results - Demand forecasting on the basis of past trends indicates the likelihood that sales of discount stores in the Bundang area, where brand A currently has a presence, would fetch a higher estimated value than that of the average discount store in the country during 2015. If past trends persist, future sales of operational stores are likely to increase. Conclusions - In evaluating location using the simple weighting model, Seohyun Lotte Mart obtained a high rating amongst new stores in Pangyo, on the basis of accessibility, demand class, and existing stores. Therefore, when opening a new counter at a relevant store, a positive effect can be predicted.

  • PDF

Development of System Dynamics model for Electric Power Plant Construction in a Competitive Market (경쟁체제 하에서의 발전소 건설 시스템 다이내믹스 모델 개발)

  • 안남성
    • Korean System Dynamics Review
    • /
    • v.2 no.2
    • /
    • pp.25-40
    • /
    • 2001
  • This paper describes the forecast of power plant construction in a competitive korean electricity market. In Korea, KEPCO (Korea Electric Power Corporation, fully controlled by government) was responsible for from the production of the electricity to the sale of electricity to customer. However, the generation part is separated from KEPCO and six generation companies were established for whole sale competition from April 1st, 2001. The generation companies consist of five fossil power companies and one nuclear power company in Korea at present time. Fossil power companies are scheduled to be sold to private companies including foreign investors. Nuclear power company is owned and controlled by government. The competition in generation market will start from 2003. ISO (Independence System Operator will purchase the electricity from the power exchange market. The market price is determined by the SMP(System Marginal Price) which is decided by the balance between demand and supply of electricity in power exchange market. Under this uncertain circumstance, the energy policy planners such as government are interested to the construction of the power plant in the future. These interests are accelerated due to the recent shortage of electricity supply in California. In the competitive market, investors are no longer interested in the investment for the capital intensive, long lead time generating technologies such as nuclear and coal plants. Large unclear and coal plants were no longer the top choices. Instead, investors in the competitive market are interested in smaller, more efficient, cheaper, cleaner technologies such as CCGT(Combined Cycle Gas Turbine). Electricity is treated as commodity in the competitive market. The investors behavior in the commodity market shows that the new investment decision is made when the market price exceeds the sum of capital cost and variable cost of the new facility and the existing facility utilization depends on the marginal cost of the facility. This investors behavior can be applied to the new investments for the power plant. Under these postulations, there is the potential for power plant construction to appear in waves causing alternating periods of over and under supply of electricity like commodity production or real estate production. A computer model was developed to sturdy the possibility that construction will appear in waves of boom and bust in Korean electricity market. This model was constructed using System Dynamics method pioneered by Forrester(MIT, 1961) and explained in recent text by Sternman (Business Dynamics, MIT, 2000) and the recent work by Andrew Ford(Energy Policy, 1999). This model was designed based on the Energy Policy results(Ford, 1999) with parameters for loads and resources in Korea. This Korea Market Model was developed and tested in a small scale project to demonstrate the usefulness of the System Dynamics approach. Korea electricity market is isolated and not allowed to import electricity from outsides. In this model, the base load such as unclear and large coal power plant are assumed to be user specified investment and only CCGT is selected for new investment by investors in the market. This model may be used to learn if government investment in new unclear plants could compensate for the unstable actions of private developers. This model can be used to test the policy focused on the role of unclear investments over time. This model also can be used to test whether the future power plant construction can meet the government targets for the mix of generating resources and to test whether to maintain stable price in the spot market.

  • PDF

A Study of the Abalone Outlook Model Using by Partial Equilibrium Model Approach Based on DEEM System (부분균형모형을 이용한 전복 수급전망모형 구축에 관한 연구)

  • Han, Suk-Ho;Jang, Hee-Soo;Heo, Su-Jin;Lee, Nam-Su
    • The Journal of Fisheries Business Administration
    • /
    • v.51 no.2
    • /
    • pp.51-69
    • /
    • 2020
  • The purpose of this study is to construct an outlook model that is consistent with the "Fisheries Outlook" monthly published by the Fisheries Outlook Center of the Korea Maritime Institute(KMI). In particular, it was designed as a partial equilibrium model limited to abalone items, but a model was constructed with a dynamic ecological equation model(DEEM) system taking into account biological breeding and shipping time. The results of this study are significant in that they can be used as basic data for model development of various items in the future. In this study, due to the limitation of monthly data, the market equilibrium price was calculated by using the recursive model construction method to be calculated directly as an inverse demand. A model was built in the form of a structural equation model that can explain economic causality rather than a conventional time series analysis model. The research results and implications are as follows. As a result of the estimation of the amount of young seashells planting, it was estimated that the coefficient of the amount of young seashells planting from the previous year was estimated to be 0.82 so that there was no significant difference in the amount of young seashells planting this year and last year. It is also meant to be nurtured for a long time after aquaculture license and limited aquaculture area(edge style) and implantation. The economic factor, the coefficient of price from last year was estimated at 0.47. In the case of breeding quantity, it was estimated that the longer the breeding period, the larger the coefficient of breeding quantity in the previous period. It was analyzed that the impact of shipments on the breeding volume increased. In the case of shipments, the coefficient of production price was estimated unelastically. As the period of rearing increased, the estimation coefficient decreased. Such result indicates that the expected price, which is an economic factor variable and that had less influence on the intention to shipments. In addition, the elasticity of the breeding quantity was estimated more unelastically as the breeding period increased. This is also correlated with the relative coefficient size of the expected price. The abalone supply and demand forecast model developed in this study is significant in that it reduces the prediction error than the existing model using the ecological equation modeling system and the economic causal model. However, there are limitations in establishing a system of simultaneous equations that can be linked to production and consumption between industries and items. This is left as a future research project.

A Study on Improvement of Collaborative Filtering Based on Implicit User Feedback Using RFM Multidimensional Analysis (RFM 다차원 분석 기법을 활용한 암시적 사용자 피드백 기반 협업 필터링 개선 연구)

  • Lee, Jae-Seong;Kim, Jaeyoung;Kang, Byeongwook
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.139-161
    • /
    • 2019
  • The utilization of the e-commerce market has become a common life style in today. It has become important part to know where and how to make reasonable purchases of good quality products for customers. This change in purchase psychology tends to make it difficult for customers to make purchasing decisions in vast amounts of information. In this case, the recommendation system has the effect of reducing the cost of information retrieval and improving the satisfaction by analyzing the purchasing behavior of the customer. Amazon and Netflix are considered to be the well-known examples of sales marketing using the recommendation system. In the case of Amazon, 60% of the recommendation is made by purchasing goods, and 35% of the sales increase was achieved. Netflix, on the other hand, found that 75% of movie recommendations were made using services. This personalization technique is considered to be one of the key strategies for one-to-one marketing that can be useful in online markets where salespeople do not exist. Recommendation techniques that are mainly used in recommendation systems today include collaborative filtering and content-based filtering. Furthermore, hybrid techniques and association rules that use these techniques in combination are also being used in various fields. Of these, collaborative filtering recommendation techniques are the most popular today. Collaborative filtering is a method of recommending products preferred by neighbors who have similar preferences or purchasing behavior, based on the assumption that users who have exhibited similar tendencies in purchasing or evaluating products in the past will have a similar tendency to other products. However, most of the existed systems are recommended only within the same category of products such as books and movies. This is because the recommendation system estimates the purchase satisfaction about new item which have never been bought yet using customer's purchase rating points of a similar commodity based on the transaction data. In addition, there is a problem about the reliability of purchase ratings used in the recommendation system. Reliability of customer purchase ratings is causing serious problems. In particular, 'Compensatory Review' refers to the intentional manipulation of a customer purchase rating by a company intervention. In fact, Amazon has been hard-pressed for these "compassionate reviews" since 2016 and has worked hard to reduce false information and increase credibility. The survey showed that the average rating for products with 'Compensated Review' was higher than those without 'Compensation Review'. And it turns out that 'Compensatory Review' is about 12 times less likely to give the lowest rating, and about 4 times less likely to leave a critical opinion. As such, customer purchase ratings are full of various noises. This problem is directly related to the performance of recommendation systems aimed at maximizing profits by attracting highly satisfied customers in most e-commerce transactions. In this study, we propose the possibility of using new indicators that can objectively substitute existing customer 's purchase ratings by using RFM multi-dimensional analysis technique to solve a series of problems. RFM multi-dimensional analysis technique is the most widely used analytical method in customer relationship management marketing(CRM), and is a data analysis method for selecting customers who are likely to purchase goods. As a result of verifying the actual purchase history data using the relevant index, the accuracy was as high as about 55%. This is a result of recommending a total of 4,386 different types of products that have never been bought before, thus the verification result means relatively high accuracy and utilization value. And this study suggests the possibility of general recommendation system that can be applied to various offline product data. If additional data is acquired in the future, the accuracy of the proposed recommendation system can be improved.