• 제목/요약/키워드: Forced-convection

검색결과 296건 처리시간 0.022초

강제 대류를 통한 열소산 구조물의 위상최적화 (Topological Optimization of Heat Dissipating Structure with Forced Convection)

  • 윤길호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.408-409
    • /
    • 2008
  • This paper presents a new development for topology optimization of heat-dissipating structure with forced convection. To cool down electric devices or machines, two types of convection models have been widely used: Natural convection model with a large Archimedes number and Forced convection with a small Archimedes number. Nowadays, many engineering application areas such as electrochemical conversion device or fuel cell devices adopt the forced convection to transfer generated heat. Therefore, to our knowledge, it becomes an important issue to design flow channels inside which generated heat transfer. Thus, this paper studies optimal topological designs considering fluid-heat interaction. To consider the effect of the advection in the heat transfer problem, the incompressible Navier-stokes equation is solved. This paper numerically studies the coupling phenomena and presents optimal channel design considering forced convection.

  • PDF

진동하에서 일방향응고 시킨 $Al-CuAl_2$ 공정복합재료의 응고에 관한 연구 (Unidirectional Solidification of $Al-CuAl_2$ Eutectic Composites under Forced Convection by Vibration)

  • 이현규;이길홍
    • 한국주조공학회지
    • /
    • 제18권3호
    • /
    • pp.234-239
    • /
    • 1998
  • Unidirectional solidification of $Al-CuAl_2$ eutectic composites was studied under the condition of forced convection by vibration. It has been shown that thermal gradient for solid is different from that for liquid during solidification under force convection by vibration. With increase of vibration, mobility of liquid increases, but decreases with decreasing vibration. The rate of solidification is very high initially, and decreases suddenly. For further solidification, the rate of solidification decrceases slowly, and shows a L-type behavior. The mechanical vibration during solidification effects efficiently on nucleation, and induces a forced convection in liquid. By the forced convection, great thermal gradient of liquid interface between solid and liquid can be obtained. The amount of solute near the interface also decreases as solute distribution is improved by the forced convection.

  • PDF

자연대류와 강제대류에서 펠티에 소자를 이용한 내부터널 구조를 가지는 히트싱크에 관한 연구 (A Study on the Heat Sink with internal structure using Peltier Module In the Natural and Forced Convection)

  • 이민;김태완
    • 한국산학기술학회논문지
    • /
    • 제15권7호
    • /
    • pp.4072-4080
    • /
    • 2014
  • 펠티에 소자는 전자부품이나 장비에서 발생하는 열을 냉각하기 위한 방법으로 많이 사용되고, 히트싱크는 이러한 열을 외부로 방출하기 위한 방법으로 많이 사용되고 있다. 본 연구에서는 내부터널의 형상을 가지는 히트싱크에 대한 냉각 및 히팅성능을 자연대류와 강제대류 상태에서 열전달 특성에 대하여 고찰하였다. 또한, 시간에 따른 히트싱크의 열전달 특성 및 온도분포의 변화에 따른 실험을 수행하였고, 자연대류와 강제대류에 따른 히트싱크의 열전달 특성, 온도분포의 변화를 실험을 통해 비교 연구 하였다. 냉각 실험에서 A형상 및 B형상 냉각 핀 히트싱크는 자연대류보다는 강제대류에서 온도가 더 감소하는 것을 알 수가 있었고, 강제대류와 자연대류에서 A, B형상 모두 $-15^{\circ}C$까지 떨어지는 것을 알 수 있었다. 전압이 증가 할수록 강제대류와 자연대류 상태에서 A, B형상 냉각 핀 히트싱크 모두 온도가 감소하였다. 히팅실험에서 A형상 및 B형상 냉각 핀 히트싱크는 자연대류보다는 강제대류에서 온도가 더 증가하는 것을 알 수가 있었고, 강제대류와 자연대류에서 전압이 13V일 때, A형상 냉각 핀 히트싱크는 전압이 $150^{\circ}C$, 강제대류에서 B형상 냉각 핀 히트싱크는 $145^{\circ}C$까지 증가하였다. 전압이 증가할수록 강제대류와 자연대류 상태에서 A, B형상 냉각 핀 히트싱크 모두 온도가 증가하였다.

뉴 디자인된 히트싱크의 열 유동 현상 컴퓨터 시뮬레이션 (Computational Simulation of Heat flow phenomena in Newly Designed Heat Sinks)

  • 임송철;최종운;강계명
    • 한국재료학회지
    • /
    • 제14권11호
    • /
    • pp.775-779
    • /
    • 2004
  • For improvement of heat dissipation performance, heat analysis is conducted on the newly designed heat sinks under two convection conditions by using computational fluid dynamics(CFD). Three types of heat sink, plate, wave and top vented wave, are used, and convection conditions are the variations of gravity direction at natural convection and of fan location at forced convection. The results of analysis showed that the heat resistances of top vented wave heat sink were $0.17^{\circ}C$/W(forced convection) and $0.48^{\circ}C$/W(natural convection). In the case of natural convection, gravity direction affected heat flow change, and protection against heat performance was superior in case of z-axis gravity direction. Under the forced convection, all the heat sinks revealed superior thermal characteristics in the fan position of z-axis rather than y-axis. In this study, it was observed that the top vented wave type heat sink showed the best ability of heat radiation comparing with the others.

Analysis of forced convection in the HTTU experiment using numerical codes

  • M.C. Potgieter;C.G. du Toit
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.959-965
    • /
    • 2024
  • The High Temperature Test Unit (HTTU) was an experimental set-up to conduct separate and integral effects tests of the Pebble Bed Modular Reactor (PBMR) core. The annular core consisted of a randomly packed bed of uniform spheres. Natural convection tests using both nitrogen and helium, and forced convection tests using nitrogen, were conducted. The maximum material temperature achieved during forced convection testing was 1200 ℃. This paper presents the numerical analysis of the flow and temperature distribution for a forced convection test using 3D CFD as well as a 1D systems-CFD computer code. Several modelling approaches are possible, ranging from a fully explicit to a semi-implicit method that relies on correlations of their associated phenomena. For the comparison between codes, the analysis was performed using a porous media approach, where the conduction and radiative heat transfer were lumped together as an effective thermal conductivity and the convective heat transfer was correlated between the solid and gas phases. The results from both codes were validated against the experimental measurements. Favourable results were obtained, in particular by the systems-CFD code with minimal computational and time requirements.

강제 대류가 있는 열소산 구조물의 구조최적설계 (Structural Optimization of Heat Dissipating Structure with Forced Convection)

  • 윤길호;강남철
    • 한국추진공학회지
    • /
    • 제13권1호
    • /
    • pp.51-57
    • /
    • 2009
  • 이 연구 논문에서는 위상최적화 방법을 사용하여 강제대류를 이용한 열소산하는 구조물을 설계하는 방법을 개발한다. 전기 부품이나 기계구조물에서 발생하는 열을 낮추기 위해서 자연 대류와 강제 대류가 넓게 사용되고 있다. 또한 현재에는 화학전지(Fuel cell)나 로켓의 추진기관 등에서 발생한 열을 낮추기 위해서 강제 대류를 사용하고 있다. 현재에 이런 시스템을 효과적으로 열을 소산시키기 위해서 유동의 채널을 설계하는 것이 아주 중요한 이슈로 다루어지고 있다. 따라서 이 논문에서는 위상최적화 기법을 사용하여 최적의 채널을 설계하는 연구를 수행한다. 대류 현상을 고려하기 위해서 비압축성 N-S 방정식의 해석을 수행하였다. 이 논문에서는 열과 유체가 연계되어 있는 시스템을 수치적으로 연구하고 강제대류를 고려하는 최적의 채널 설계 결과를 제시한다.

다양한 형상의 Heat Sink 열저항 특성에 관한 실험적 연구 (An Experimental Study on the Thermal Resistance Characteristics for Various Types of Heat Sinks)

  • 김종하;윤재호;이창식
    • 설비공학논문집
    • /
    • 제14권8호
    • /
    • pp.676-682
    • /
    • 2002
  • This paper has been made to investigate the thermal performance characteristics for the several types of heat sinks such as extruded heat sink, aluminum foam heat sink, layered heat sink. The various types heat sinks are prepared and tested for natural convection as well as forced convection. The experimental results for natural convection are compared to those for three types of heat sink so that the appropriate heat sink can be designed or chosen according to the heating conditions. The overall heat transfer performances for layered heat sink, extruded heat sink and aluminum foam heat sink are almost comparable to those under natural convection and forced convection. The forced convection of layered heat sink become 1.2 times as high as those of extruded heat sink, and the forced convection of extruded heat sink become 1.2 times as high as those of aluminum foam heat sink. This study shows that bar height, bar distance and number of bar for layered heat sink are important parameters, which have a serious influence on thermal performance for layered heat sinks.

강제대류-적외선 리플로 솔더링시 전자조립품의 열적반응 분석 (Analysis on the Thermal Response of Electronic Assemblies during Forced Convection-Infrared Reflow Soldering)

  • 손영석;신지영
    • Journal of Welding and Joining
    • /
    • 제21권6호
    • /
    • pp.46-54
    • /
    • 2003
  • The thermal response of electronic assemblies during forced convection-infrared reflow soldering is studied. Soldering for attaching electronic components to printed circuit boards is performed in a process oven that is equipped with porous panel heaters, through which air is injected in order to dampen temperature fluctuations in the oven which can be established by thermal buoyancy forces. Forced convection-infrared reflow soldering process with air injection is simulated using a 2-dimensional numerical model. The multimode heat transfer within the reflow oven as well as within the electronic assembly is simulated. Parametric study is also performed to study the effects of various conditions such as conveyor speed, blowing velocity, and electronic assembly emissivity on the thermal response of electronic assemblies. The results of this study can be used in the process oven design and selecting the oven operating conditions to ensure proper solder melting and solidification.

초크랄스키 단결정 장치내 실리콘 용융액 운동의 자기장효과 (Magnetic field effects of silicon melt motion in Czochralski crystal puller)

  • 이재희
    • 한국결정성장학회지
    • /
    • 제15권4호
    • /
    • pp.129-134
    • /
    • 2005
  • 초크랄스키 단결정장치내 실리콘 유동의 자기장효과에 대한 수치해석을 하였다. 8" 단결정 성장과정에서 난류 모형을 사용하여 수송현상을 계산하였다. 도가니 회전수가 작으면 자연대류가 지배적이었다. 도가니 회전수가 증가할수록 강제대류가 증가되며 온도 분포는 더 넓어진다. cusp 자기장을 인가하면 도가니근처의 유동이 크게 감소하며 온도분포는 전도의 경우와 비슷해진다.

CFD 해석을 이용한 한국도로공사 표준 25 [W] LED 모듈의 방열 특성 분석 (Analysis of Heat Dissipation Characteristics for Standard 25 [W] LED Module of Korea Expressway Corporation: Using CFD Analysis)

  • 이세일;허인성;이아람;정민주;유영문
    • 한국전기전자재료학회논문지
    • /
    • 제27권8호
    • /
    • pp.541-546
    • /
    • 2014
  • Korea Expressway Corporation established standard of LED lighting fixture in Dec. 2013. To raise compatibility, the standard requires a fixed form and it is applied to street lights and tunnel lights, etc. Because streetlight has different circumstance condition from tunnel light that is down light and exposed to constant wind velocity over height of 8 meters, in case of LED module which has the same shape, characteristic of radiant heat can be different. In this paper, we designed 25 [W] LED Module that is designated by standard of Korea Expressway Corporation and analyzed characteristics of radiant heat about natural convection and forced convection. It is dropped 10.12[$^{\circ}C$] that max temperature is decreased by increasing 20 mm of bended height of heatsink at the condition of natural convection. Radiant heat characteristic of bended height 35 mm became 78.08[$^{\circ}C$] at the condition of natural convection, 55.30[$^{\circ}C$] at the condition of forced convection so that 22.78[$^{\circ}C$] is decreased that is 29.1[%] decrease. Bended height 55mm became 67.96[$^{\circ}C$] at the condition of natural convection, 48.04[$^{\circ}C$] at the condition of forced convection so that 19.92[$^{\circ}C$] is decreased that is 29.3% decrease.