• Title/Summary/Keyword: Forced outage rate(FOR)

Search Result 19, Processing Time 0.023 seconds

A Study on Assessment of Forced Outage Rates for Reliability Evaluation of Power System (전력계통의 확률론적 신뢰도평가를 위한 사고확률 추정에 관한 연구)

  • Lee Sang Sik;Tran Trung Tinh;Choi Jae Seok;Jeon D.;Kim T.;Cha S.;Choo J.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.195-198
    • /
    • 2004
  • In recent, the Importance and necessity of some studies on reliability evaluation of grid comes from the recent black-out accidents occurred in the world. The quantity evaluation of transmission system reliability is very important under competitive electricity environment. Accurate probabilistic reliability evaluation depends on assessment of forced outage rate of elements, generators, transmission lines. This paper describes basic theory of relationship between outage rates and reliability evaluation for assessing FOR(forced outage rate) of elements of power system. In case study, FORs assessed and supplied from Canada Electricity Association is introduced and FORs assessed from using actual historical data from 1997 to 2002 for transmission lines of KEPCO system.

  • PDF

Avoided Generation Costs of IPPS Considering Forced Outage Rate and Economic Loading Order (고장정지율과 경제적 투입순서를 고려한 민자발전소의 회피발전비용 계산)

  • 원종률;박종배;김진호
    • Journal of Energy Engineering
    • /
    • v.11 no.1
    • /
    • pp.47-58
    • /
    • 2002
  • This paper presents a new method for the evaluation of avoided generation costs. Unlike conventional load decrement method, it exactly considers forced outage rate and economic loading order of IPPs (Independent Power Producers). Therefore we can provide exact generation avoided costs of IPPs by the developed method. Because probabilistic simulation is conducted in this method, effects on the costs of IPPs are exactly considered. Also we suggest an allocation method of avoided generation costs by participation factor. In the case studies we have shown avoided generation costs considering loading order and forced out-age rate by using this method.

Probabilistic Generation Modeling in Electricity Markets Considering Generator Maintenance Outage (전력시장의 발전기 보수계획을 고려한 확률적 발전 모델링)

  • Kim Jin-Ho;Park Jong-Bae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.8
    • /
    • pp.418-428
    • /
    • 2005
  • In this paper, a new probabilistic generation modeling method which can address the characteristics of changed electricity industry is proposed. The major contribution of this paper can be captured in the development of a probabilistic generation modeling considering generator maintenance outage and in the classification of market demand into multiple demand clusters for the applications to electricity markets. Conventional forced outage rates of generators are conceptually combined with maintenance outage of generators and, consequently, effective outage rates of generators are newly defined in order to properly address the probabilistic characteristic of generation in electricity markets. Then, original market demands are classified into several distinct demand clusters, which are defined by the effective outage rates of generators and by the inherent characteristic of the original demand. We have found that generators have different effective outage rates values at each classified demand cluster, depending on the market situation. From this, therefore, it can be seen that electricity markets can also be classified into several groups which show similar patterns and that the fundamental characteristics of power systems can be more efficiently analyzed in electricity markets perspectives, for this classification can be widely applicable to other technical problems in power systems such as generation scheduling, power flow analysis, price forecasts, and so on.

FOR(Forced Outage Rate) Calculation with Weather Effects for KEPCO Systems (날씨효과를 고려한 한전계통의 각 송전선로별 고장확률 계산)

  • Kim, Tae-Kyun;Cha, Seung-Tae;Kwak, Bang-Myung;Kim, Jin-O;Lee, Seung-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.235-237
    • /
    • 2005
  • This paper presents a method of incorporating weather effects in KEPCO systems reliability evaluation. The effects of adverse weather on composite power system FOR(Forced Outage Rate) increase considerably as the proportion of outages in adverse weather increases. It is therefore important to establish suitable and practical procedures for collecting adverse weather data which can be utilized in realistic KEPCO systems reliability assessment. The modeling procedure proposed in this paper also provides a realistic FOR in KEPCO systems using real historical data.

  • PDF

Impact of Maintenance Outage Rate Modeling on the Minimum Reserve Rate in Long-term Generation Expansion Planning (예방정비율(MOR) 모델링 방식이 수급계획의 최소설비예비율 산정에 미치는 영향)

  • Kim, Hyoungtae;Lee, Sungwoo;Kim, Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1712-1720
    • /
    • 2017
  • In South Korea, minimum reserve rate, which is to satisfy reliability standard, has been determined by simulation result using WASP. But, it is still controversial whether the level of minimum reserve rate is adequate. Thus, in this study, various analyses of minimum reserve rate are being conducted. WASP uses the probabilistic simulation technique to evaluate whether reliability standard is satisfied. In this process, forced outage rate and maintenance periods of each generator play important roles. Especially, the long-term plan can be varied depending on how maintenance periods deal with. In order to model maintenance periods in the probabilistic simulation technique, WASP uses derating method. However, broad analyses have to be conducted because there are various ways including derating method to model maintenance periods which result in different results. Therefore, in this paper, 3 different maintenance outage rate modeling methods are applied to arbitrarily modeled system based on the basic plan for long-term electricity supply and demand of South Korea. Results show impact of each modeling method on minimum reserve rate.

A Comparative Study of Maintenance Scheduling Methods for Small Utilities

  • Ong, H.L.;Goh, T.N.;Eu, P.S.
    • International Journal of Reliability and Applications
    • /
    • v.4 no.1
    • /
    • pp.13-26
    • /
    • 2003
  • This paper presents a comparative study of a few commonly used maintenance scheduling methods for small utilities that consists solely of thermal generating plants. Two deterministic methods and a stochastic method are examined. The deterministic methods employ the leveling of reserve capacity criterion, of which one uses a heuristic rule to level the deterministic equivalent load obtained by using the product of the unit capacity and its corresponding forced outage rate. The stochastic method simulates the leveling of risk criterion by using the peak load carry capacity of available units. The results indicate that for the size and type of the maintenance scheduling problem described In this study, the stochastic method does not produce a schedule which is significantly better than the deterministic methods.

  • PDF

A Study on Optimal Modeling for the Reliability Evaluation of KEPCO Systems (한전시스템의 신뢰도 평가를 위한 모델 수립 및 고장률 계산)

  • Lee Seung Hyuk;Kim Jin O;Cha Seung Tae;Kim Tae Kyun;Choo Jin Bu
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.177-179
    • /
    • 2004
  • In the past decade, the importance and necessity of some studies on reliability evaluation of power system comes from the recent blackout events occurred in the world. Such power system reliability evaluation depends especially on historical outage data. This paper presents reliability model for evaluation in KEPCO systems that is suited to it's propose, and is to show how failure rates and unavailability(Forced Outage Rate) of transmission system components can be determined from the historical outage data of KEPCO systems. The data for these components were made available by KEPCO and KEPRI. A record spanning about 10 years of the historical data was used.

  • PDF

Reliability Analysis of AC traction System Substation by using Bayes' Theory (베이즈 이론을 이용한 교류전철변전소의 신뢰도 분석)

  • Kim, Yong-Hyun;Koo, Bon-Hui;Cha, Jun-Min;Kim, Hyung-Chul
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.445-450
    • /
    • 2008
  • The primary role of traction power systems is to provide reliable and continuous electrical energy to satisfy traction loads. AC traction substation transforms power from generation company and supply the power to the electric railway power line. Forced outage rate(FOR) of the equipment of substation should be used in the evaluation. This paper proposes the fast and easy way to evaluate by using Bayes' theory when a new equipment is added to the existing substation facility.

  • PDF

A Study on Outage Probability Analysis of HVDC Converter Considering Spare Elements (HVDC 변환소의 여유요소(Spare)를 고려한 사고확률 분석에 관한 연구)

  • Oh, Ungjin;Choi, Jaeseok;Kim, Chan-Ki;Yoon, Yongbeum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1408-1414
    • /
    • 2018
  • Recently, as a solution to the problem of maintaining system reliability, stability, and quality occurring worldwide, such as activation of smart grid and recognition of super grid and rapid grid interconnection of renewable energy sources HVDC(High Voltage Direct Current) will appear on the front of the electric power system. These concepts are also very important concepts in HVDC systems. When the HVDC system is linked to the existing power system, it is composed of AC/DC/AC conversion device, and these conversion devices are composed of many thyristors. These parts(Devices) are connected in a complicated manner, and they belong to the one with a higher failure rate. However, the problem of establishing the concept of failure rate of HVDC parts directly linked to economic efficiency and the understanding accompanying it are still insufficient. Therefore, in this paper, we establish the meaning of reliability in power system and try to develop a model to analyze and verify the failure rate data of HVDC based on this.