• Title/Summary/Keyword: Forced motion

Search Result 230, Processing Time 0.023 seconds

ON BIFURCATION MODES AND FORCED RESPONSES IN COUPLED NONLINEAR OSCILLATORS

  • Pak, Chol-Hui;Shin, Hyeon-Jae
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.1 no.1
    • /
    • pp.29-67
    • /
    • 1995
  • A procedure is formulated, in this paper, to compute the bifurcation modes born by the stability change of normal modes, and to compute the forced responses associated with bifurcation modes in inertially and elastically coupled nonlinear oscillators. It is assumed that a saddle-loop is formed in Poincare map at the stability chage of normal modes. In order to test the validity of procedure, it is applied to one-to-one internal resonant systems in which the solutions are guaranteed within the order of a small perturbation parameter. The procedure is also applied to the exact system in which normal modes are written in exact form and the stability of normal modes can be exactly determined. In this system the stability change of normal modes occurs several times so that various types of bifurcation modes are created. A method is described to identify a fixed point on Poincare map as one of bifurcation modes. The limitations and advantage of proposed procedure are discussed.

Torsional Vibration Characteristics of Nonuniform Circular Rods (불균일 원형 봉의 비틀림 진동 특성)

  • 정형곤;김진오
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.609-616
    • /
    • 2001
  • The vibrational characteristics of nonuniform circular rods have been studied theoretically and experimentally in this paper. The differential equation of torsional motion expressed in terms of the angular displacement has been solved exactly and approximately for a stepped circular rod and for a conically-tapered rod. Solutions of the boundary-value problem have yielded the natural frequencies, mode shapes and forced responses of the rods. The theoretical solutions of forced response have been verified by comparing them with experimental ones.

  • PDF

Longitudinal vibration of double nanorod systems using doublet mechanics theory

  • Aydogdu, Metin;Gul, Ufuk
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.37-52
    • /
    • 2020
  • This paper investigates the free and forced longitudinal vibration of a double nanorod system using doublet mechanics theory. The doublet mechanics theory is a multiscale theory spanning between lattice dynamics and continuum mechanics. Equations of motion and boundary conditions for the double nanorod system are obtained using Hamilton's principle. Clamped-clamped and clamped-free boundary conditions are considered. Frequencies and dynamic displacements are determined to demonstrate the effects of length scale parameter of considered material and geometry of the nanorods. It is shown that frequencies obtained by the doublet mechanics theory are bounded from above (van Hove singularity) and unlike classical elasticity theory doublet mechanics theory predicts finite number of modes depending on the length of the nanotube. The present doublet mechanics results have been compared to molecular dynamics, experimental and nonlocal theory results and good agreement is observed between the present and other mentioned results. The difference between wave frequencies of graphite is less than 10% between doublet mechanics and experimental results near to the end of the first Brillouin zone.

Nonlinear resonances of nonlocal strain gradient nanoplates made of functionally graded materials considering geometric imperfection

  • Jia-Qin Xu;Gui-Lin She;Yin-Ping Li;Lei-Lei Gan
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.795-811
    • /
    • 2023
  • When studying the resonance problem of nanoplates, the existing papers do not consider the influences of geometric nonlinearity and initial geometric imperfection, so this paper is to fill this gap. In this paper, based on the nonlocal strain gradient theory (NSGT), the nonlinear resonances of functionally graded (FG) nanoplates with initial geometric imperfection under different boundary conditions are established. In order to consider the small size effect of plates, nonlocal parameters and strain gradient parameters are introduced to expand the assumptions of the first-order shear deformation theory. Subsequently, the equations of motion are derived using the Euler-Lagrange principle and solved with the help of perturbation method. In addition, the effects of initial geometrical imperfection, functionally graded index, strain gradient parameter, nonlocal parameter and porosity on the nonlinear forced vibration behavior of nanoplates under different boundary conditions are discussed.

Optimum Shape Synthesis of Cam And Follower in Cam-Valve System to Minimize Contact Force (캠-밸브 기구에서 접촉력 최소화를 위한 캠과 종동자 형상 최적 합성)

  • 김성훈;전혁수;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.534-546
    • /
    • 1990
  • In this work, an optimum shape synthesis for rolling contact components was done to minimize contact forces considering dynamic characteristics of the system. Even this method was applied to an OHC type cam follower system, it can be expanded to general rolling contact shape design problems which are strictly forced to follow predetermined motion. First, the follower optimum angular motion was derived to minimize the valve peak acceleration while satisfying all the constraints of valve motion. Then the cam and follower contact shape were synthesized to give the proposed follower motion. Theoretically, two components shape to generate a predetermined motion can not be uniquely determined. So the cam shape was syntehsized with parametric synthesis method to minimize the peak contact force between cam and follower when the follower shape is assumed as a circle or an ellipse.

Mesh Editing Using the Motion Feature Vectors (운동 특성 벡터에 기반한 메쉬 에디팅 기법)

  • Lee, Soon-Young;Kim, Chang-Su;Lee, Sang-Uk
    • Journal of Broadcast Engineering
    • /
    • v.13 no.2
    • /
    • pp.214-221
    • /
    • 2008
  • In this paper, we proposed a new mesh editing algorithm based on the motion between two sample meshes. First, the motion vectors are defined as the derivation vector of the corresponding vertices on the sample meshes. Then, the motion feature vectors are extracted between the motion vectors. The motion feature vectors represent the similarity of the vertex motion in a local mesh surface. When a mesh structure is forced by an external motion of anchor vertices, the deformed mesh geometry is obtained by minimizing the cost function with preserving the motion feature vectors. Simulation results demonstrated that the proposed algorithm yields visually pleasing editing results.

Numerical Simulation of Flow past Forced and Freely Vibrating Cylinder at Low Reynolds Number

  • Jung, Jae Hwan;Nam, Bo Woo;Jung, Dong-Ho
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.165-173
    • /
    • 2017
  • This study aims at validating simulations of the forced and freely vibrating cylinders at Reynolds number of approximately 500 in order to identify the capability of the CFD code, and to establish the analysis process of the vortex-induced vibration (VIV). The direct numerical and large eddy simulations were employed to resolve the various length scales of the vortices, and the morphing technique was used to consider a motion of the circular cylinder. For the forced vibration case, both in- and anti-phase VIV processes were observed regarding the frequency ratio. Namely, when the frequency ratio approaches to unity, the synchronization/lock-in process occurs, leading to substantial increases in drag and lift coefficients. This is strongly linked with the switch in timing of the vortex formation, and this physical tendency is consistent with that of Blackburn and Henderson (J. Fluid Mech., 1999, 385, 255-286) as well as force coefficients. For the free oscillation case, the mass and damping ratio of 50.8 and 0.0024 were considered based on the study of Blackburn et al. (J. Fluid Struct., 2000, 15, 481-488) to allow the direct comparison of simulation results. The simulation results for a peak amplitude of the cylinder and a shedding mode are reasonably comparable to that of Blackburn et al. (2000). Consequently, based on aforementioned results, it can be concluded that numerical methods were successfully validated and the calculation procedure was well established for VIV analysis with reasonable results.

Undamped Forced Vibration Response of Curved Composite Panels using Enhanced Assumed Strain Finite Element-Direct Integration Method (추가변형률 유한요소-직접적분법을 이용한 복합적층 곡선패널의 비감쇠 강제진동응답)

  • Park, Won-Tae;Chun, Kyoung-Sik;Son, Byung-Jik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.247-258
    • /
    • 2004
  • The composite shell element is developed for the solution of undamped forced vibration problem of composite curved panels. The finite element used in the current study is an 4-node enhanced assumed shell element with six degrees of freedom per node. The composite shell element is free of both shear and membrane locking phenomenon by using the enhanced assumed strain(EAS) method. A modification to the first-order shear deformation shell theory is proposed, which results in parabolic thorough-thickness distribution of the transverse shear strains and stresses. It eliminates the need for shear correction factors in the first order theory. Newmark's direct integration technique is used for carrying out the integration of the equation motion, to obtain the repones history. Parametric studies of curved composite panels are carried out for forced vibration analysis by geometrical shapes and by laminated composite; such as fiber orientation, stacking sequence.

Investigation of dynamic response of "bridge girder-telpher-load" crane system due to telpher motion

  • Maximov, Jordan T.;Dunchev, Vladimir P.
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.485-507
    • /
    • 2018
  • The moving load causes the occurrence of vibrations in civil engineering structures such as bridges, railway lines, bridge cranes and others. A novel engineering method for separation of the variables in the differential equation of the elastic line of Bernoulli-Euler beam has been developed. The method can be utilized in engineering structures, leading to "a beam under moving load model" with generalized boundary conditions. This method has been implemented for analytical study of the dynamic response of the metal structure of a single girder bridge crane due to the telpher movement along the bridge girder. The modeled system includes: a crane bridge girder; a telpher, moving with a constant horizontal velocity; a load, elastically fixed to the telpher. The forced vibrations with their own frequencies and with a forced frequency, due to the telpher movement, have been analyzed. The loading resulting from the telpher uniform movement along the bridge girder is cyclical, which is a prerequisite for nucleation and propagation of fatigue cracks. The concept of "dynamic coefficient" has been introduced, which is defined as a ratio of the dynamic deflection of the bridge girder due to forced vibrations, to the static one. This ratio has been compared with the known from the literature empirical dynamic coefficient, which is due to the telpher track unevenness. The introduced dynamic coefficient shows larger values and has to be taken into account for engineering calculations of the bridge crane metal structure. In order to verify the degree of approximation, the obtained results have been compared with FEM outcomes. An additional comparison has been made with the exact solution, proposed by Timoshenko, for the case of simply supported beam subjected to a moving force. The comparisons show a good agreement.

Forced vibration of a sandwich Timoshenko beam made of GPLRC and porous core

  • Mohammad Safari;Mehdi Mohammadimehr;Hossein Ashrafi
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • In this study, forced vibration behavior of a piezo magneto electric sandwich Timoshenko beam is investigated. It is assumed a sandwich beam with porous core and graphene platelet reinforced composite (GPLRC) in facesheets subjected to magneto-electro-elastic and temperature-dependent material properties. The magneto electro platelets are under linear function along with the thickness that includes a cosine function and magnetic and electric constant potentials. The governing equations of motion are derived using modified strain gradient theory for microstructures. The effects of material length scale parameters, temperature change, different distributions of porous, various patterns of graphene platelets, and the core to face sheets thickness ratio on the natural frequency and excited frequency of a sandwich Timoshenko beam are scrutinized. Various size-dependent methods effects such as MSGT, MCST, and CT on the natural frequency is considered. Moreover, the final results affirm that the increase in porosity coefficient and volume fractions lead to an increase in the amount of natural frequency; while vice versa for the increment in the aspect ratio. From forced vibration analysis, it is understood that by increasing the values of volume fraction and the length thickness of GPL, the maximum deflection of a sandwich beam decreases. Also, it is concluded that increasing the temperature, the thickness of GPL, and the initial force leads to a decrease in the maximum deflection of GPL. It is also shown that resonance phenomenon occurs when the natural and excitation frequencies become equal to each other. Outcomes also reveal that the third natural frequency owns the minimum value of both deflection and frequency ratio and the first natural frequency has the maximum.