• Title/Summary/Keyword: Forced convection heat transfer

Search Result 175, Processing Time 0.019 seconds

Incompressible smoothed particle hydrodynamics modeling of thermal convection

  • Moballa, Burniadi;Chern, Ming-Jyh;Odhiambo, Ernest
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.211-235
    • /
    • 2013
  • An incompressible smoothed particle hydrodynamics (ISPH) method based on the incremental pressure projection method is developed in this study. The Rayleigh-B$\acute{e}$nard convection in a square enclosure is used as a validation case and the results obtained by the proposed ISPH model are compared to the benchmark solutions. The comparison shows that the established ISPH method has a good performance in terms of accuracy. Subsequently, the proposed ISPH method is employed to simulate natural convection from a heated cylinder in a square enclosure. It shows that the predictions obtained by the ISPH method are in good agreements with the results obtained by previous studies using alternative numerical methods. A rotating and heated cylinder is also considered to study the effect of the rotation on the heat transfer process in the enclosure space. The numerical results show that for a square enclosure at, the addition of kinetic energy in the form of rotation does not enhance the heat transfer process. The method is also applied to simulate forced convection from a circular cylinder in an unbounded uniform flow. In terms of results, it turns out that the proposed ISPH model is capable to simulate heat transfer problems with the complex and moving boundaries.

Vertical arrangement of coils for efficient cargo tank heating

  • Magazinovic, Gojko
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.662-670
    • /
    • 2019
  • Tanker cargo tanks are equipped with the means of raising and maintaining the cargo discharge temperature to a suitable level. In this paper, a new heating coil design is proposed and analyzed. Contrary to conventional designs, wherein the heating coils are evenly distributed over the tank bottom, the proposed design arranges the heating coils in the central part of the tank bottom, in a vertical direction. Due to the intensive cargo circulation generated, a forced convection is superimposed on a buoyancy-driven natural convection, providing a more efficient mixed convection heat transfer mechanism. Numerical simulations performed by using a finite volume method show that in the case of 7-bar steam Bunker C heavy fuel oil heating, a five-hour circulation phase average heat transfer coefficient equals 199.2 W/m2K. This result might be taken as an impetus for the more thorough experimental examination.

Experimental Study on Coefficient of Flow Convection (유수대류계수에 관한 실험적 연구)

  • 정상은;오태근;양주경;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.297-302
    • /
    • 2000
  • Pipe cooling method is widely used for reduction of hydration heat and control of cracking in mass concrete structures. However, in order to effectively apply pipe cooling systems to concrete structure, the coefficient of flow convection relating the thermal transfer between inner stream of pipe and concrete must be estimated. In this study, a device measuring the coefficient of flow convection is developed. Since a variation of thermal distribution caused by pipe cooling has a direct effect in internal forced flows, the developed testing device is based on the internal forced flow concept. Influencing factors on the coefficient of flow convection are mainly flow velocity, pipe diameter and thickness, and pipe material. finally a prediction model of the coefficient of flow convection is proposed using experimental results from the developed device. According to the proposed prediction model, the coefficient of flow convection increases with increase in flow velocity and decreases with increase in pipe diameter and thickness. Also, the coefficient of flow convection is largely affected by the type of pipe materials.

  • PDF

The effect of inclined ribbed tubes on heat transfer and friction loss (Ribbed 管의 管傾斜角이 熱傳達에 미치는 影響)

  • 박성찬;김종보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.105-109
    • /
    • 1987
  • Artificial roughness as a means of improving heat transfer gains more interest, especially for application to various heat exchanger. This study present experimental information for single-phase free and force convection heat transfer in a circular tube containing a internal spiral ribs. To examine the effect of inclined angle of tube, it was varied from 0 deg to 90 deg (0.deg., 22.5.deg., 45.deg., 90.deg.) with horizontal. Length of tube is 1.6m, and width, height and helix angle of rib are 4.2mm, 1.5mm, and 60 deg respectively. Water was used as a working fluid and test piece was heated with a constant heat flux by electric heater. Experiments have been performed with the range of modified Grashof number from 2 * 10$^{6}$ to 15 * 10$^{6}$ for free convection and with the range of Reynolds number from 3,000 to 40,000 for forced convection. Since the increase in heat transfer coefficients influence directly to the friction coefficient of the tube, the changes of the friction factors are also presented for several different cases considered in this investigation.

An Experimental Investigation on Flame Spreading Over Liquid Fuel Surface (액체연료표면에서의 화염 확장에 관한 연구)

  • 김한석;백승욱;문정기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.271-276
    • /
    • 1989
  • Flame spreading over a hydrocarbon fuel surface has been investigated for liquid fuels such as kerosene and diesel, using thermocouple. Without forced convection, it was clearly found that the flame spreading was mainly controlled by the liquid fuel surface flow. Furthermore, the radiative heat transfer was dominant over a conductive heat transfer in kerosene. But in diesel the latter was found to be more influential than the former, when the direction of windflow was the same as that of flame spreading. The oscillation period and amplitude of the flame spreading velocity increase if the windflow is blowing in the direction of the flame spreading velocity, and decrease if the direction of windflow is blowing against the flame spreading direction.

Experimental Research of Characteristic of Pool Boiling Heat Transfer of Saturated Liquid Nitrogen with Helical Coil Type Heat Exchanger (나선형 튜브 열교환 방식의 포화 상태 액체질소의 비등열전달 특성에 대한 실험적 연구)

  • Seo, Mansu;Lee, Jisung;Kim, Junghan;Kang, Sunil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.59-70
    • /
    • 2020
  • Obtaining external forced convection heat transfer from bubble boiling and validating it with experimental results using cryogenic liquids are suggested to derive total heat transfer coefficient with pool boiling condition in the case of coil type heat exchanger with a bundle of tubes and to overcome the limitation of using the empirical correlation. Experiment is conducted with pool boiling heat transfer of saturate liquid nitrogen with helical coil type heat exchanger using liquid oxygen as hot stream fluid. Experimentally measured heat transfer coefficient is well-agreed with the estimated curve considering nucleate boiling and forced convection induced by bubble rise.

Forced Convection Correlation for Single Circular Fin-tube Heat Exchanger (단일 원형휜-원형관에 대한 강제대류열전달 상관식)

  • 강희찬;강민철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.584-588
    • /
    • 2004
  • This work was performed to investigate the heat transfer characteristics of the circular fin-tube heat exchanger. This paper contains the experimental data for the seven kinds of fin geometries. The correlation of Stasiulevicius agreed with the experimental data at high Reynolds number, however not well at low Reynolds number. The Nusselt number was well correlated with Graetz number, and showed a transition near Gz=10. An empirical correlation proposed in the present work agreed well with the experimental data.

A Numerical Study of Initial Unsteady Flow and Mixed Convection in an Enclosed Cavity Using the PISO Algorithm (PISO 알고리즘을 이용한 밀폐공간내에서의 유동 및 혼합대류에 관한 연구)

  • Choi, Y.G.;Chung, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.1
    • /
    • pp.63-73
    • /
    • 1990
  • A numerical analysis of initial unsteady state flow and heat transfer in an enclosed cavity has been performed by the Modified QUICK Scheme. The stable QUICK Scheme which modified the coefficient always to be positive is included in this numerical analysis. The implicit method is applied to solve the unsteady state flow; between iterations the PISO (Pressure - Implicit with Splitting of Operators) algorithm is employed to correct and update the velocity and pressure fields on a staggered grid. The accuracy of the Modified QUICK Scheme is proved by applying fewer grid systems than those which Ghia et al. and Davis applied. The initial unsteady mixed convection in an enclosed cavity is analyzed using the above numerical procedure. This study focuses on the development of the large main vortex and secondary vortex in forced convection, the effects of the Rayleigh Number in natural convection and the relative direction of the forced and natural convection.

  • PDF

TOWARD MECHANISTIC MODELING OF BOILING HEAT TRANSFER

  • Podowski, Michael Z.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.889-896
    • /
    • 2012
  • Recent progress in the computational fluid dynamics methods of two- and multiphase phase flows has already started opening up new exciting possibilities for using complete multidimensional models to simulate boiling systems. Combining this new theoretical and computational approach with novel experimental methods should dramatically improve both our understanding of the physics of boiling and the predictive capabilities of models at various scale levels. However, for the multidimensional modeling framework to become an effective predictive tool, it must be complemented with accurate mechanistic closure laws of local boiling mechanisms. Boiling heat transfer has been studied quite extensively before. However, it turns out that the prevailing approach to the analysis of experimental data for both pool boiling and forced-convection boiling has been associated with formulating correlations which normally included several adjustable coefficients rather than based on first principle models of the underlying physical phenomena. One reason for this has been the tendency (driven by practical applications and industrial needs) to formulate single expressions which encompass a broad range of conditions and fluids. This, in turn, makes it difficult to identify various specific factors which can be independently modeled for different situations. The objective of this paper is to present a mechanistic modeling concept for both pool boiling and forced-convection boiling. The proposed approach is based on theoretical first-principle concepts, and uses a minimal number of coefficients which require calibration against experimental data. The proposed models have been validated against experimental data for water and parametrically tested. Model predictions are shown for a broad range of conditions.

Numerical Study on Improvement of Storage Environment of Igloo-Shaped Magazine Using Forced Ventilation (강제환기를 적용한 이글루형 탄약고 저장환경 개선에 관한 수치적 연구)

  • Yoon, Hae-Deun;Kim, Seong Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.99-106
    • /
    • 2021
  • This study explores the improvement of storage environment of igloo-shaped magazine using forced ventilation. Conjugate heat transfer analysis of forced convection and conduction are performed to calculate the flow, temperature, and relative humidity field in igloo-shaped magazine. Through the conjugate heat transfer analysis, the effects of inlet vent, volume flow rates of jet, and jet angles on the condensation and relative humidity are numerically investigated. The area of condensation in igloo-shaped magazine and relative humidity at the surface of ammunitions are then calculated.