• 제목/요약/키워드: Forced circulation

검색결과 89건 처리시간 0.026초

Numerical analysis of the temperature distribution of the EM pump for the sodium thermo-hydraulic test loop of the GenIV PGSFR

  • Kwak, Jaesik;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1429-1435
    • /
    • 2021
  • The temperature distribution of an electromagnetic pump was analyzed with a flow rate of 1380 L/min and a pressure of 4 bar designed for the sodium thermo-hydraulic test in the Sodium Test Loop for Safety Simulation and Assessment-Phase 1 (STELLA-1). The electromagnetic pump was used for the circulation of the liquid sodium coolant in the Intermediate Heat Transport System (IHTS) of the Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR) with an electric power of 150 MWe. The temperature distribution of the components of the electromagnetic pump was numerically analyzed to prevent functional degradation in the high temperature environment during pump operation. The heat transfer was numerically calculated using ANSYS Fluent for prediction of the temperature distribution in the excited coils, the electromagnet core, and the liquid sodium flow channel of the electromagnetic pump. The temperature distribution of operating electromagnetic pump was compared with cooling of natural and forced air circulation. The temperature in the coil, the core and the flow gap in the two conditions, natural circulation and forced circulation, were compared. The electromagnetic pump with cooling of forced circulation had better efficiency than natural circulation even considering consumption of the input power for the air blower. Accordingly, this study judged that forced cooling is good for both maintenance and efficiency of the electromagnetic pump.

과실부위 송풍이 참외의 품질 및 발효과 발생에 미치는 영향 (Effect of Forced-air circulation of ambient Fruit on the Occurrence Fermented-fruit and Fruit Quality of Oriental Melon(Cucumis melo L. var. makuwa Mak.))

  • 연일권;최성국;최부술;신용습
    • 생물환경조절학회지
    • /
    • 제8권2호
    • /
    • pp.99-107
    • /
    • 1999
  • 참외 과실부위 송풍이 칼슘흡수와 발효과 발생에 미치는 영향을 구명하기 위하여, 풍속 0.3m/sec로 10시부터 13시까지 1일 3시간 과실부위에 송풍을 하였다. 송풍은 착과 10일후, 20일후, 30일 후부터 수확까지 송풍처리구와 무송풍구로 나누어 비교한 결과, 과중은 착과 30일후 송풍처리에서 가장 무거웠으며, 과육두께는 착과 30일후 송풍구에서 가장 두꺼웠다. 과실의 경도는 착과 10일후 송풍구에서 가장 높았으며, 과육 및 태좌의 당도는 착과 20일 후 송풍 처리에서 가장 높았다. 과실의 L값은 착과 10일후 송풍구, a값 및 Y. I값은 착과 30일후 송풍구에서 좋아 무송풍에 비하여 송풍 처리에서 과실의 착색이 우수하였다. 과육 및 태좌의 Ca 함량은 송풍처리에 비하여 무송풍처리에서 많았으나, 발효과 발생은 송풍처리구에서 적었다. 특히 착과 20일후 송풍처리구에서 발효과율 및 기형과율의 발생이 적었고 상품과율은 증가하였다.

  • PDF

친환경 식물성절연유의 유동대전현상 연구 (Research of Flow Electrification Phenomena of the used Environment-Friendly Vegetable Insulating Oils)

  • 최순호;허창수
    • 전기학회논문지
    • /
    • 제61권4호
    • /
    • pp.580-584
    • /
    • 2012
  • The insulating oils perform a cooling and insulation action in electric power transformer. The mineral oil has immanent fire dangerousness and environmental contamination problem. Vegetable insulating oil has higher ignition point, flash point and more excellent biodegradability than conventional mineral oil. In a real oil-filled transformers, some of the power is dissipated in the form of heat. And transformer require the heat to be removed from the winding and insulator by forced convection of the insulating oil. The flow electrification occurs when insulating oil was forced to be circulated. In this paper, influence of temperature, velocity of flow, and insulating pipe and diameter on streaming electrification of vegetable insulating oil was investigated using forced circulation apparatus. Temperature effects were most significant, and it showed a peak in the temperature $30^{\circ}C$ to $35^{\circ}C$ at insulating and copper pipe. The change of flow electrification according to area variety could be checked by change of diameter.

Experimental and numerical investigations on effect of reverse flow on transient from forced circulation to natural circulation

  • Li, Mingrui;Chen, Wenzhen;Hao, Jianli;Li, Weitong
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.1955-1962
    • /
    • 2020
  • In a sudden shutdown of primary pump or coolant loss accident in a marine nuclear power plant, the primary flow decreases rapidly in a transition process from forced circulation (FC) to natural circulation (NC), and the lower flow enters the steam generator (SG) causing reverse flow in the U-tube. This can significantly compromise the safety of nuclear power plants. Based on the marine natural circulation steam generator (NCSG), an experimental loop is constructed to study the characteristics of reverse flow under middle-temperature and middle-pressure conditions. The transition from FC to NC is simulated experimentally, and the characteristics of SG reverse flow are studied. On this basis, the experimental loop is numerically modeled using RELAP5/MOD3.3 code for system analysis, and the accuracy of the model is verified according to the experimental data. The influence of the flow variation rate on the reverse flow phenomenon and flow distribution is investigated. The experimental and numerical results show that in comparison with the case of adjusting the mass flow discontinuously, the number of reverse flow tubes increases significantly during the transition from FC to NC, and the reverse flow has a more severe impact on the operating characteristics of the SG. With the increase of flow variation rate, the reverse flow is less likely to occur. The mass flow in the reverse flow U-tubes increases at first and then decreases. When the system is approximately stable, the reverse flow is slightly lower than obverse flow in the same U-tube, while the flow in the obverse flow U-tube increases.

The simulation study on natural circulation operating characteristics of FNPP in inclined condition

  • Li, Ren;Xia, Genglei;Peng, Minjun;Sun, Lin
    • Nuclear Engineering and Technology
    • /
    • 제51권7호
    • /
    • pp.1738-1748
    • /
    • 2019
  • Previous research has shown that the inclined condition has an impact on the natural circulation (natural circulation) mode operation of Floating Nuclear Power Plant (FNPP) mounted on the movable marine platform. Due to its compact structure, small volume, strong maneuverability, the Integral Pressurized Water Reactor (IPWR) is adopted as marine reactor in general. The OTSGs of IPWR are symmetrically arranged in the annular region between the reactor vessel and core support barrel in this paper. Therefore, many parallel natural circulation loops are built between the core and the OTSGs primary side when the main pump is stopped. and the inclined condition would lead to discrepancies of the natural circulation drive head among the OTSGs in different locations. In addition, the flow rate and temperature nonuniform distribution of the core caused by inclined condition are coupled with the thermal hydraulics parameters maldistribution caused by OTSG group operating mode on low power operation. By means of the RELAP5 codes were modified by adding module calculating the effect of inclined, heaving and rolling condition, the simulation model of IPWR in inclined condition was built. Using the models developed, the influences on natural circulation operation by inclined angle and OTSG position, the transitions between forced circulation (forced circulation) and natural circulation and the effect on natural circulation operation by different OTSG grouping situations in inclined condition were analyzed. It was observed that a larger inclined angle results the temperature of the core outlet is too high and the OTSG superheat steam is insufficient in natural circulation mode operation. In general, the inclined angle is smaller unless the hull is destroyed seriously or the platform overturn in the ocean. In consequence, the results indicated that the IPWR in the movable marine platform in natural circulation mode operation is safety. Selecting an appropriate average temperature setting value or operating the uplifted OTSG group individually is able to reduce the influence on natural circulation flow of IPWR by inclined condition.

온실 난방을 위한 평판형 태양집열기의 열적성능 분석 (Analysis on the Thermal Performance of Flat-plate Solar Collector for Greenhouse Heating(I))

  • 서원명;윤용철;이승환;이석건
    • 한국농공학회지
    • /
    • 제40권6호
    • /
    • pp.46-56
    • /
    • 1998
  • This study was performed to investigate thermal performances of two different types of flat-plate solar collector systems; natural circulation system and forced circulation system. Conclusions obtained from this study are summarized as follows; 1) In the natural circulation system, the total heat amounts retrieved by starting recovery soon after sunrise were ranged from 10.28 to 17.20MJ/m$^2$, while the total heat amounts retrieved by starting recovery after sunset were ranged from 5.31 to 10.77MJ/m$^2$. 2) The collector efficiency in natural circulation system were ranged from 51.1% to 54.1% when the collected heat was retrieved after sunrise and were 65.8~78.0% when the collected heat was retrieved soon after sunset. 3) According to the regression analysis between fluid flow rates and fluid temperature difference at inlet and outlet of collector pipe, there was high regressive corelations with regression coefficient, r, of 0.982. 4) The collector efficiencies estimated for forced circulation system were 73.1~88.6%, and 78.4~94.8%, and 64.2%~74.5%, respectively when fluid circulation rates were 4.2 l/min, and 7.0 l/min, respectively.

  • PDF

Critical Heat Flux under Forced and Natural Circulations of Water at Low-Pressure, Low-Flow Conditions

  • Kim, Yun-Il;Baek, Won-Pil;Chang, Soon-Heung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(1)
    • /
    • pp.315-320
    • /
    • 1995
  • The CHF phenomenon has been investigated for water flow under forced and natural circulation modes with vertical round tubes at low pressure and low flow condition. Experiments have been performed by using three different test sections for mass fluxes below 400 kg/㎡s under near atmospheric pressure. The experimental data for forced and natural circulation are compared with each other. To predict the flow rate at the two-phase region our test condition has been analyzed by RELAP5/MOD3 because the local two-phase condition inside the stainless steel tube cannot be directly measured. To predict the CHF with accuracy we have to consider the parameters at the single-phase region as well as the flow behavior at the two-phase region.

  • PDF

시설내 공기순환이 참외 발효과 발생에 미치는 영향 (Effect of Air Circulation in Greenhouse on Development of Fermented Fruits in Oriental Melon)

  • 신용습;연일권;배수곤;최성국;최부술
    • 생물환경조절학회지
    • /
    • 제10권1호
    • /
    • pp.23-29
    • /
    • 2001
  • 저온기 참외 시설재배시 시설내 공기흐름의 촉진이 발효과 발생 경감에 미치는 효과를 구명하기 위하여 하우스에 공기순환 및 환기팬을 설치하여 착과 5일 후인 4월 6일부터 6월 29일까지 비 오는 날을 제외한 모든 날의 09시 30분부터 15분간 처리 후 15분간은 정지시키는 방법으로 17시까지 가동하여 관행(권취식환기)과 비교 시험한 결과 작물체 부위의 풍속은 무처리는 0.06~0.08m.s$^{-1}$, 환기팬은 0.24~0.32m.s$^{-1}$, 공기 순환기는 0.60~0.72m.s$^{-1}$였다. 무처리에 비하여 공기순환 처리에서 엽장, 엽폭 등 생육은 처리간 차리가 없었으나 일비액량은 공기순환처리에서 월등히 증가하였다. 무처리에 비하여 공기순환 처리에서 발효과율이 유의하게 감소하였으나 환기팬처리와는 큰 차이가 없었다.

  • PDF

자동차용 토크 컨버터의 수치해석적 연구(Part I) - 수력학적 설계와 순환유량의 평가 - (A Numerical Study on the Automotive Torque Converter(Part I) - Hydraulic Design and Evaluation of Circulation Flow Rate -)

  • 김홍식;박재인;주원구;조강래
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.28-36
    • /
    • 1998
  • In order to establish the hydraulic design process of the torque converter, pump, turbine and stator were designed by reverse design method including one dimensional analysis, angular momentum distribution and forced vortex design. And the significance of evaluation of the circulation flow rate in torus of the torque converter was verified by numerical calculation if the combined blade rows of pump and turbine. It was confirmed that the computational method using interrow mixing model by Park and Cho was reliable to predict the flow-field and performance of the torque converter.

  • PDF

득량만의 해수유동에 관한 수치실험 -1. $M_2$ 조에 의한 해수유동- (A Numerical Study on the Circulation in Deukryang Bay -I. Tidal Circulation forced by $M_2$-tide-)

  • 정은진;홍철훈;이병걸;조규대
    • 한국수산과학회지
    • /
    • 제27권4호
    • /
    • pp.397-403
    • /
    • 1994
  • Circulations in Deukryang Bay are investigated using a numerical shallow water model. In the flow fields observed at four stations, north-south velocity components are dominant. In the model, the circulation forced by $M_2$-tide basically corresponded well to the observations. The model shows the strong currents in the mouth and the eastern part in the bay with about 60 cm/s and 50 cm/s, respectively. The model also shows the eddies in the tidal residual currents. To investigate the mechanism of eddy formation some numerical experiments are carried out. The results show that inertial and topographic effects play an important role in the eddy formation.

  • PDF