• Title/Summary/Keyword: Forced Response

Search Result 403, Processing Time 0.021 seconds

Experimental study on a new damping device for mitigation of structural vibrations under harmonic excitation

  • Alih, Sophia C.;Vafaei, Mohammadreza;Ismail, Nufail;Pabarja, Ali
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.567-576
    • /
    • 2018
  • This manuscript introduces a new damping device which is composed of a water tank and a pendulum. The new damping device can be tuned to multiple frequencies. In addition, it has a higher energy dissipation capacity when compared with the conventional Tuned Liquid Dampers (TLDs). In order to evaluate the efficiency of this new damping device a series of free vibration and forced vibration tests were conducted on a scaled down single-story one-bay steel frame. Two different configurations were studied for the mass of the pendulum that included a completely and a partially submerged mass. It was observed that the completely submerged configuration led to 44% higher damping ratio when compared with the conventional TLD. In addition, the completely submerged configuration reduced the peak displacement response of the structure 1.6 times more than the conventional TLD. The peak acceleration response of the structure equipped with the new damping device was reduced twice more than the conventional TLD. It was also found that, when the excitation frequency is lower than the resonance frequency, the conventional TLD performs better than the partially submerged configuration of the new damping device.

A Research on Dynamic Tension Response of Model Mooring Chain by Forced Oscillation Test (강제동요 시험을 이용한 모형 계류삭의 동적 응답 연구)

  • Kim, Hyun-Joe;Hong, Sa-Young;Hong, Sup;Cho, Suk-Kyu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.134-141
    • /
    • 2002
  • A series of forced oscillation test on model mooring chain was carried out to investigate dynamic tension characteristics. The model test was conducted at two different water depth to gather basic data for 'truncated mooring test' and 'hybrid mooring test'. The truncated and hybrid mooring test are highly recommended to overcome the limitation of water depth in model test recently. The resultant tension RAO gives good possibility of approximation of dynamic tension by equivalent weight adjustment for the ratio of water depth in different water depth. Because the hybrid mooring test is the adequate combination of model test and simulation, accurate simulation model on mooring system is essential. The simulation results show good agreement with model test results.

  • PDF

Forced vibration of a functionally graded porous beam resting on viscoelastic foundation

  • Alnujaie, Ali;Akbas, Seref D.;Eltaher, Mohamed A.;Assie, Amr
    • Geomechanics and Engineering
    • /
    • v.24 no.1
    • /
    • pp.91-103
    • /
    • 2021
  • This paper concerns with forced dynamic response of thick functionally graded (FG) beam resting on viscoelastic foundation including porosity impacts. The dynamic point load is proposed to be triangle point loads in time domain. In current analysis the beam is assumed to be thick, therefore, the two-dimensional plane stress constitutive equation is proposed to govern the stress-strain relationship through the thickness. The porosity and void included in constituent is described by three different distribution models through the beam thickness. The governing equations are obtained by using Lagrange's equations and solved by finite element method. In frame of finite element analysis, twelve-node 2D plane element is exploited to discretize the space domain of beam. In the solution of the dynamic problem, Newmark average acceleration method is used. In the numerical results, effects of porosity coefficient, porosity distribution and foundation parameters on the dynamic responses of functionally graded viscoelastic beam are presented and discussed. The current model is efficient in many applications used porous FGM, such as aerospace, nuclear, power plane sheller, and marine structures.

On nonlinear deflection analysis and dynamic response of sandwich plates based on a numerical method

  • Yong Huang;Zengshui Liu;Shihan Ma;Sining Li;Rui Yu
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.79-90
    • /
    • 2023
  • Nonlinear forced vibration properties of three-layered plates containing graphene platelets (GPL) filled skins and an auxetic core have been inquired within the present paper. Owning reduced weight as well as reduced stiffness, rectangle-shaped auxetic cores have been frequently made from novel techniques such as additive manufacturing. Here, the rectangle shape core is amplified via the graphene-filled layers knowing that the layers possess uniform and linear graphene gradations. The rectangle shape core has the equivalent material specifications pursuant to relative density value. The sandwich plate is formulated pursuant to Kirchhoff plate theory while a numerical trend has been represented to discretize the plate equations. Next, an analytical trend has been performed to establish the deflection-frequency plots. Large deflections, core density and GPL amplification have showed remarkable impacts on dynamic response of three-layered plates.

Anti-stress effects of Sihosogansan in the passive avoidance test and the forced swimming test (시호소간산(柴胡疏肝散)이 스트레스로 인한 기억저하와 우울행동에 미치는 영향)

  • Jung, Min-Ho;Lee, Tae-Hee
    • The Korea Journal of Herbology
    • /
    • v.22 no.2
    • /
    • pp.127-135
    • /
    • 2007
  • Objective : Investigation of the anti-stress effects of Sihosogansan Methods : Passive avoidance test(PAT) was performed after applying immobilization stress in water to rats. Also, forced swimming test(FST) was performed to another rats and after FST, the degree of Tyrosine Hydroxylase(TH) expression was measured with immunohistochemical method in the regions of locus coeruleus(LC) and ventral tegmental area (VTA). Results : In the PAT after immobilization stress in water, response latency was significantly increased in the Sihosogansan(400mg/kg) group in comparison with the control group. In the FST, immobility was significantly decreased in the Sihosogansan groups (100mg/kg, 400mg/kg), comparing with the control group. Stress-induced TH increases were suppressed in the Sihosogansan groups (100mg/kg, 400mg/kg) at the LC and the VTA region respectively. Conclusion : Sihosogansan can improve memory ability of rats, reduce behavior of depression in rats, decrease TH-immunoreactive cells at the LC and VTA region in rat, and it may be concluded that Sihosogansan has significant effect in reducing stress.

  • PDF

Forced Vibration Analysis of Lattice Type Structure by Transfer Stiffness Coefficient Method (전달강성계수법에 의한 격자형 구조물의 강제진동 해석)

  • 문덕홍;최명수
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.949-956
    • /
    • 1998
  • Complex and large lattice type structures are frequently used in design of bridge, tower, crane and aerospace structures. In general, in order to analyze these structures we have used the finite element method(FEM). This method is the most widely used and powerful method for structural analysis lately. However, it is necessary to use a large amount of computer memory and computational time because the FEM requires many degrees of freedom for solving dynamic problems exactly for these complex and large structures. For analyzing these structures on a personal computer, the authors developed the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficient matrix which is related to force and displacement vector at each node. And we suggested TSCM for free vibration analysis of complex and large lattice type structures in the previous report. In this paper, we formulate forced vibration analysis algorithm for complex and large lattice type structures using extened TSCM. And we confirmed the validity of TSCM through computational results by the FEM and TSCM, and experimental results for lattice type structures with harmonic excitation.

  • PDF

Multicracks identification in beams based on moving harmonic excitation

  • Chouiyakh, Hajar;Azrar, Lahcen;Alnefaie, Khaled;Akourri, Omar
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.1087-1107
    • /
    • 2016
  • A method of damage detection based on the moving harmonic excitation and continuous wavelet transforms is presented. The applied excitation is used as a moving actuator and its frequency and speed parameters can be adjusted for an amplified response. The continuous wavelet transforms, CWT, is used for cracks detection based on the resulting amplified signal. It is demonstrated that this identification procedure is largely better than the classical ones based on eigenfrequencies or on the eigenmodes wavelet transformed. For vibration responses, free and forced vibration analyses of multi-cracked beams are investigated based on both analytical and numerical methodological approaches. Cracks are modeled through rotational springs whose compliances are evaluated using linear elastic fracture mechanics. Based on the obtained forced responses, multi-cracks positions are accurately identified and the CWT identification can be highly improved by adjusting the frequency and the speed excitation parameters.

Exact solution for dynamic response of size dependent torsional vibration of CNT subjected to linear and harmonic loadings

  • Hosseini, Seyyed A.H.;Khosravi, Farshad
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.25-36
    • /
    • 2020
  • Rotating systems concern with torsional vibration, and it should be considered in vibration analysis. To do this, the time-dependent torsional vibrations in a single-walled carbon nanotube (SWCNT) under the linear and harmonic external torque, are investigated in this paper. Eringen's nonlocal elasticity theory is considered to demonstrate the nonlocality and constitutive relations. Hamilton's principle is established to derive the governing equation of motion and consequently related boundary conditions. An analytical method, called the Galerkin method, is utilized to discretize the driven differential equations. Linear and harmonic torsional loads, along with determined amplitude, are applied to the SWCNT as the external torques. SWCNT is considered under the clamped-clamped end supports. In free vibration, analysis of small scale effect reveals the capability of natural frequencies in different modes, and this results desirably are in coincidence with another study. The forced torsional vibration in the time domain, especially for carbon nanotubes, has not been done before in the previous works. The previous forced studies were devoted to the transverse vibrations. It should be emphasized that the dynamical analysis of torsion is novel, workable, and at the beginning of the path. The variations of nonlocal parameter, CNT's thickness, and the influence of excitation frequency on time-dependent angular displacement and nondimensional angular displacement are investigated in the context.

Pulmonary Function Index Comparisons Depending on Various Postures of Stroke Patients

  • Lee, Kyung-Soo;Lee, Myung-Mo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.14 no.1
    • /
    • pp.43-51
    • /
    • 2019
  • PURPOSE: To prevent secondary complications from decreased pulmonary functions and promote neurological recovery, identification of respiratory capacity change patterns depending on different postures of stroke patients and investigation of their properties are needed for active rehabilitation. Therefore, this study was conducted to investigate the changes in vital capacity in response to different positions and to implement the results as clinical data. METHODS: A respiratory function test was administered to 52 patients with stroke in the sitting, supine, paretic side lying, and non-paretic side lying positions. Pulmonary function indexes used for comparison were forced vital capacity (FVC), forced expiratory volume at 1 second (FEV1), forced expiratory flow 25-75% (FEF 25-75%), and maximum voluntary ventilation (MVV). One-way repeated ANOVA was used for analysis, and post hoc analysis was conducted using least significant difference (LSD). RESULTS: All pulmonary function indexes were measured in the order of sitting, paretic side lying, supine, and non-paretic side lying positions. Excluding the FEF25-75% and MVV of the supine compared with the paretic side lying position, all other pulmonary function indexes differed significantly (p<.05). CONCLUSION: There are differences in pulmonary function indexes depending on different postures of stroke patients, and the study showed that the non-paretic side lying position yielded the greatest effect on lung ventilation mechanisms. Based on these results, appropriate postures need to be considered during physical therapy interventions for stroke patients.

Forced vibration of the hydro-elastic system consisting of the orthotropic plate, compressible viscous fluid and rigid wall

  • Akbarov, Surkay D.;Huseynova, Tarana V.
    • Coupled systems mechanics
    • /
    • v.8 no.3
    • /
    • pp.199-218
    • /
    • 2019
  • This paper studies the forced vibration of the hydro-elastic system consisting of the anisotropic (orthotropic) plate, compressible viscous fluid and rigid wall within the scope of the exact equations and relations of elastodynamics for anisotropic bodies for describing of the plate motion, and with utilizing the linearized exact Navier-Stokes equations for describing of the fluid flow. For solution of the corresponding boundary value problem it is employed time-harmonic presentation of the sought values with respect to time and the Fourier transform with respect to the space coordinate on the coordinate axis directed along the plate length. Numerical results on the pressure acting on the interface plane between the plate and fluid are presented and discussed. The main aim in this discussion is focused on the study of the influence of the plate material anisotropy on the frequency response of the mentioned pressure. In particular, it is established that under fixed values of the shear modulus of the plate material a decrease in the values of the modulus of elasticity of the plate material in the direction of plate length causes to increase of the absolute values of the interface pressure. The numerical results are presented not only for the viscous fluid case but also for the inviscid fluid case.