• Title/Summary/Keyword: Forced Air Convection

Search Result 117, Processing Time 0.022 seconds

Development of high-efficiency heating system using humidifying particles (가습 입자를 활용한 고효율 난방 시스템 개발)

  • Lee, Jeong-Won;Hong, Kyung-Bo
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.17-24
    • /
    • 2020
  • Products for heating indoors in low temperature and dry winter are largely divided into products using fossil fuels and products using electricity. The fossil fuels can warm the entire space by convection, but there is a high risk of fire and the frequent ventilation due to the increase in carbon monoxide and carbon dioxide. Heaters using electricity are mainly used because they are convenient to use and are cheap. However, these products can not efficiently warm the air because they use radiation energy. In other words, only the front part exposed to the heater is warm, and the rear part has no heating effect at all. Also, because it emits a large amount of light, fatigue of the eyes is very high. Another problem is that when using electric heaters, the room tends to be dry by high heat. Indoor humidity maintenance is a very important factor in the prevention and treatment of respiratory diseases. Especially, it is essential for health care for infants, bronchial organs and people with weak respiratory because humidity is low in winter. In this study, we conducted a study to develop a product that can improve heating efficiency while maintaining proper indoor humidity by combining heat energy and moisture particles. The concept of humidification and heating at the same time, moisture particles generated in the humidifier pass through the heater, include thermal energy, and the moisture particles with thermal energy are diffused into the space by forced convection, thereby warming the entire space. In addition, the heating time is shortened as the feeling temperature is increased with the high relative humidity, and this has the effect that the heating cost in winter is reduced.

An Experimental Study of Fouling Effect on the Heat Transfer Around a Tube in Staggered Tube Banks (엇갈림 관군에서 원관 주위의 열전달에 미치는 파울링 영향에 관한 실험적 연구)

  • Kim, Min-Su;Baek, Byeong-Jun;Park, Bok-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1478-1485
    • /
    • 2000
  • An experimental study has been performed to investigated the forced convection heat transfer characteristics of 6 circular cylinders in staggered arrangement in a cross flow of air. The water scale deposited on condenser wall of power plant was used to investigate the effect of roughness of scaled surfaces. The relative roughness*average diameter of scale/cylinder diameter) was in a range of k/d=0.0066, 0.0111, 0.0167, 0.0222 and 0.0278. The cylinder spacings(L/d) varies from 1.5 to 4.0 where L denote the cylinder spacings along and normal to the upstream uniform flow direction. The Reynolds number was varied in a range of 10, 000$\leq$ Re $\leq$ 50,000. The local and mean Nusselt numbers were investigated as a function of scale roughness, the cylinder spacing and Reynolds number. The results are compared with those of clean cylinder and inline tube bank, subsequently the mean fouling resistance over the entire circumference was estimated from those results as a function of scale roughness, the cylinder spacing and Reynolds number.

Thermal and Flow Analysis of Outer-Rotor Type BLDC Motor with Cooling Blades (냉각날개를 갖는 외전형 BLDC 모터의 열유동 해석)

  • Kang, Soo-Jin;Wang, Se-Myung;Shim, Ho-Kyung;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.772-779
    • /
    • 2007
  • In this paper, thermo-flow characteristics of an outer-rotor type BLDC motor are numerically analyzed using three-dimensional turbulence modeling. On the rotor of the BLDC motor, cooling blades and cooling holes are existed for the enhanced cooling performances. Rotating the blades and holes generates axial air flow streaming into inner rotor side and passing through stator slots, which cools down stator by forced convection. Operating tests are performed and the numerical temperature fields are found to be in good agreement with experimental results. A new design of the BLDC motor has also been developed and major design parameters such as the arrangement of cooling holes, the area of cooling holes and cooling blades, and the cooling blade angle, are analyzed for the enhanced convective heat transfer rate. It is found that the convective heat transfer rate of the new BLDC motor model is increased by about 8.1%, compared to that of the reference model.

Influence of the Effective Thermal Thansport Length on the Heat Transfer Characteristics of a Liquid-Metal Heat Pipe for High-temperature Solar Thermal Devices (유효열이송거리가 고온 태양열기기용 액체금속 히트파이프의 열전달 특성에 미치는 영향)

  • Park, Cheol-Min;Boo, Joon-Hong;Kim, Jin-Soo;Kang, Yong-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.220-225
    • /
    • 2008
  • Cylindrical stainless-steel/sodium heat pipe for a high-temperature solar thermal application was manufactured and tested for transient and steady-state operations. Two layers of stainless-steel screen mesh wick was inserted as a capillary structure. The outer diameter of the heat pipe was 12.7 mm and the total length was 250 mm. The effective heat transport length, the thermal load, and the operating temperature were varied as thermal transport conditions of the heat pipe. The thermal load was supplied by an electric furnace up to 1kW and the cooling was performed by forced convection of air The effective thermal conductivity and the thermal resistance were investigated as a function of heat flux, heat transport length, and vapor temperature. Typical range of the total effective thermal conductivity was as low as 43,500 W/m K for heat flux of 176.4 kW/$m^2$ and of operating temperature of 1000 K.

  • PDF

Effects of 27.12 MHz Radio Frequency on the Rapid and Uniform Tempering of Cylindrical Frozen Pork Loin (Longissimus thoracis et lumborum)

  • Choi, Eun Ji;Park, Hae Woong;Yang, Hui Seon;Kim, Jin Se;Chun, Ho Hyun
    • Food Science of Animal Resources
    • /
    • v.37 no.4
    • /
    • pp.518-528
    • /
    • 2017
  • Quality characteristics of frozen cylindrical pork loin were evaluated following different tempering methods: 27.12 MHz curved-electrode radio frequency (RF) at 1000 and 1500 W, and forced-air convection (FC) or water immersion (WI) at $4^{\circ}C$ and $20^{\circ}C$. The developed RF tempering system with the newly designed curved-electrode achieved relatively uniform tempering compared to a parallel-plate RF system. FC tempering at $4^{\circ}C$ was the most time-consuming process, whereas 1500 W RF was the shortest. Pork sample drip loss, water holding capacity, color, and microbiological quality declined after WI tempering at $20^{\circ}C$. Conversely, RF tempering yielded minimal sample changes in drip loss, microstructure, color, and total aerobic bacteria counts, along with relatively uniform internal sample temperature distributions compared to those of the other tempering treatments. These results indicate that curved-electrode RF tempering could be used to provide rapid defrosting with minimal quality deterioration of cylindrical frozen meat block products.

An Experimental Study on the Heat Transfer Characteristics of a High-temperature Sodium Heat Pipe Depending on the Thermal Transport Conditions (고온 나트륨 히트파이프에서 열이송 조건에 따른 열전달 특성에 대한 실험 연구)

  • Park, C.M.;Boo, J.H.;Kim, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2340-2345
    • /
    • 2008
  • Cylindrical stainless-steel/sodium heat pipe for a high-temperature application was manufactured and tested for transient and steady-state operations. Two layers of Stainless-steel screen mesh wick was inserted as a capillary structure. The outer diameter of the heat pipe was 12.7 mm and the total length was 250 mm. As thermal transport conditions, the effective transport length, the heat flux, the tilt angle and the operating temperature were varied. The heat was supplied by an electric furnace up to 1 kW and the cooling was performed by forced convection of air. The effective thermal conductivity and the thermal resistance were investigated as a function of heat flux, heat transport length, and vapor temperature. Typical range of the total thermal resistance was as low as $0.036^{\circ}C/W$ at $175.8\;kW/m^2$ of heat flux and $700^{\circ}C$ of operating temperature.

  • PDF

Evaluation of U-value for Radiant Barrier Systems in Relation to Surface Emissivity (표면방사율에 따른 복사단열시스템의 열관류성능 평가 연구)

  • Kim, K.S.;Lee, D.G.;Yoon, J.H.;Song, I.C.
    • Solar Energy
    • /
    • v.20 no.3
    • /
    • pp.39-50
    • /
    • 2000
  • Radiant barrier systems(RES) constructed with low emissivity materials bounded by an open air space can be used to reduce the net radiation transfer between two surfaces. To analyze the heat transfer characteristics of the radiant barrier systems which consist of a single-glass and radiation barriers, a simple theoretical model based on energy balances was suggested. And the model was validated by means of the experimental results. Using a guarded hot box, the temperatures of layers in selected RES and energy use for each cases were measured. The results show that the model well explained the heat transfer characteristics of those RES. Also, the heat transfer coefficient correlations considering natural and forced convection heat transfer ware suggested. It is found that the heat transfer efficiency of a RBS with aluminium surface improved up to 66.6% over that of a single glazing system.

  • PDF

Design & Performance of the Solar Energy Research & Test Center (태양에너지 연구 시험센타 설계 및 효율에 관한 연구)

  • Auh, Paul Chung-Moo;Lee, Jong-Ho;Choi, Byung-Owan;Cho, Yil-Sik
    • Solar Energy
    • /
    • v.2 no.2
    • /
    • pp.29-36
    • /
    • 1982
  • The Solar Energy R&D Department of KIER under the auspice of the Korean government is pushing hard on the development of the passive solar technology with high priority for the expeditious widespread use of solar energy in Korea, since the past few years of experiences told us that the active solar technology is not yet ready for massive commercialization in Korea. KIER has completed the construction of the Solar Energy Research & Test Center in Seoul, which houses the major facilities for its all solar test programs. The Center was designed as a passive solar building with great emphasis on the energy conserving ideas. The Center is not only the largest passive building in Korea, but also the exhibit center for the effective demonstration of the passive heating and cooling technology to the Korean public. The Center was designed to satisfy the requirements based on the technical and economical criteria set by the KIER. Careful considerations, therefore, were given in depth in the following areas to meet the requirements. 1) Passive Heating Concepts The Center employed the combination of direct and indirect gain system. The shape of the Center is Balcomb House style, and it included a large built-in sunspace in front. A partition, consists of transparent and translucent glazings, separates the sunspace and the living space. Since most activities in the Center occur during the day time, direct utilization of the solar energy by the living spaces was emphasized with the limited energy storage capacity. 2) Passive Cooling Concepts(for Summer) Natural ventilation concept was utilized throughout the building. In the direct gain portion of the system, the front glazing can be openable during the cooling season. Natural convection scheme was also applied to the front sunspace for the Summer cooling. Reflective surfaces and curtains were utilized wherever needed. 3) Auxiliary Heat ing and Cooling System As an auxiliary cooling system, mechanical means(forced convection system) were adopted. Therefore forced air heating system was also used to match the duct work requirements of the auxiliary cool ing system. 4) Effect ive Insulation & Others These included the double glazed windows, the double entry doors, the night glazing insulation, the front glazing-frame insulation as well as the building skin insulation. All locally available construction materials were used, and natural lightings were provided as much as possible. The expected annual energy savings (compared to the non-insulated conventional building)of the Center was estimated to be about 80%, which accounts for both the energy conservation and the solar energy source. The Center is being instumented for the actual performance tests. The experimental results of the simplified tests are discussed in this paper.

  • PDF

An Experimental Study of Nucleate Boiling Heat Transfer With EHD Technique in CFC-11 and HCFC-123 (Chiller용 냉매 CFC-11과 대체냉매 HCFC-123의 전기장을 사용한 핵비등 열전달 촉진에 관한 연구)

  • Kwak, T.H.;Kim, J.H.;Jung, D.S.;Kim, C.B.;Cha, T.W.;Han, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.365-379
    • /
    • 1994
  • Pool boiling experiments were carried out to study the effect of electric field on nucleate boiling heat transfer. CFC-11 and its alternative HCFC-123 were used as working fluids. Boiling on both single tube and a bundle of five tubes was investigated. Heat flux varied from 5 to $25kW/m^2$ while the applied voltage changed from 0 to 1kV. The results showed that at low heat flux where boiling was not present or very weak, electric field-induced forced convection helped increase the heat transfer coefficients of CFC-11 and HCFC-123 significantly(4-15 times increase). However, at higher heat flux, nucleate boiling of CFC-11 which is a highly dielectric fluid, was not affected significantly by the application of electric field. In contrast to CFC-11, even at high heat flux, nucleate boiling of CFC-11 which has a relatively larger electric conductivity than CFC-11, was vigorously increased up to 2-4 times. The additional power required to apply the electric field was 1-2% of the total power consumption by the heater. The increase in overall heat transfer coefficient of evaporators with HCFC -123 was about 40%, suggesting a considerable reduction in evaporator size with EHD technique.

  • PDF

A Study on the Effect of Automotive Engine Performance by Using Carbon Nano Colloid Cooling Water (탄소나노콜로이드 냉각수를 사용하여 자동차 엔진성능의 향상에 관한 연구)

  • Yi, Chung-Seob;Lee, Byung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.134-142
    • /
    • 2011
  • Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Exhaust pipes with circular fin were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NOx), carbon dioxide ($CO_2$) and carbon monoxide (CO). In addition, $O_2$ concentration in the exhaust was measured. The designs adopted in this study were about exhaust pipes with solid and hollow fins around them direct surface force measurement in water using a nano size colloidal probe technique. The direct force measurement between colloidal surfaces has been an essential topic in both theories and applications of surface chemistry. As particle size is decreased from micron size down to true Carbon nano Colloid size (<10 nm), surface forces are increasingly important. Nano particles at close proximity or high solids loading are expected to show a different behavior than what can be estimated from continuum and mean field theories. The current tools for directly measuring interaction forces such as a surface force apparatus or atomic force microscopy (AFM) are limited to particles much larger than nano size. This paper use Water and CNC fluid at normal cooling system of EGR. Experimental result showed all good agreement at Re=$2.54{\times}10^4$ by free convection and Re=$3.36{\times}10^4$ by forced air furnace.