• 제목/요약/키워드: Force-Current Model

검색결과 440건 처리시간 0.026초

이송모터 전류 감지를 통한 절삭력의 간접측정과 절삭공정 감시 및 제어에의 응용 (Indirect Cutting Force Measurement by Using Servodrive Current Sensing and it's Application to Monitoring and Control of Machining Process)

  • 김태용;최덕기;주종남;김종원
    • 한국정밀공학회지
    • /
    • 제13권2호
    • /
    • pp.133-145
    • /
    • 1996
  • This paper presents an indirect cutting force measuring system, which uses the current signals from the AC servo drive units of the horizontal machining center, with its applications to the adaptive regulation of the cutting forces in various milling processes and to the on-line monitoring of tool breakage. A typical model for the feed-drive control system of a horizontal machining center is developed to analyze cutting force measurement from the drive motor. The pulsating milling forces can be measured indirectly within the bandwidth of the current feedback control loop of the feed-drive system. It is shown that the indirectly measured cutting force signals can be used in the adaptive controller for cutting force regulation. The whole scheme has been embedded in the commercial machining center and a series of cutting experiments on the face cutting processes are performed. The adaptive controller reveals reliable cutting force regulating capability against the various cutting conditions. It is also shown that the tool breakage in milling can be detected within one spindle revolution by adaptively filtering the current signals. The effect of the cutter run-out has been considered for the reliable on-line detection of tool breakage.

  • PDF

역기전력 추정기를 이용한 전류 모델 기반의 SPMSM 센서리스 벡터제어 (Current Model based SPMSM Sensorless Vector Control using Back Electro Motive Force Estimator)

  • 이정효;유재성;공태웅;이원철;원충연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 추계학술대회 논문집
    • /
    • pp.7-10
    • /
    • 2007
  • The current model based sensorless method has many benefits that it can be robust control for large load torque. However, this method should determine a coefficient of back electro motive force(back-emf). This coefficient is varied by load torque and speed. Also, the coefficient determining equation is not exist, so it is determined only by experiment. On the other hands, using only back-emf estimatior method can not drive in low speed area and it has weakness in load variation. For these problems, this paper suggests the hybrid sensorless method that mixes the back-emf estimator regarding saliency and the current based sensorless model. This estimator offers not only non-necessary coefficient for current sensorless model, but also wide speed area operating in no specific transition method.

  • PDF

MR 댐퍼의 제작과 Bingham 모델의 매개변수 추정 (Manufacturing of MR Dampers and Estimation of the Bingham Model Parameters)

  • 이건명;박문수
    • 한국기계가공학회지
    • /
    • 제13권6호
    • /
    • pp.82-87
    • /
    • 2014
  • Small MR dampers with a simple structure were designed and manufactured. The Bingham model was used to represent the dynamic characteristics of the damper, and the parameters of the model were estimated from experimental data which were obtained by harmonic tests. The value of the estimated yield shear force remains positive when no electric current is applied, and it increases slowly with the current. The estimated viscous damping coefficient has a value close to zero when no electric current is applied, and it increases almost linearly with the current.

Reduction of Electromagnetic Force in AC Distributed Winding of Fault Current Limiter under Short-Circuit Condition

  • Ghabeli, Asef;Yazdani-Asrami, Mohammad;Doroudi, Aref;Gholamian, S. Asghar
    • Journal of Magnetics
    • /
    • 제20권4호
    • /
    • pp.400-404
    • /
    • 2015
  • Various kinds of winding arrangements can be used to enable fault current limiters (FCL) to tolerate higher forces without resulting in a substantial increase in construction and fabrication costs. In this paper, a distributed winding arrangement is investigated in terms of its effects on the short-circuit forces in a three-phase FCL. The force magnitudes of the AC supplied windings are calculated by employing a finite element-based model in the time stepping procedure. The leakage flux and radial and axial force magnitudes obtained from the simulation are compared to those obtained from a conventional winding arrangement. The comparison shows that the distributed winding arrangement significantly reduces the radial and, especially, the axial force magnitudes.

와전류감쇠의 모델링 및 특성 실험에 관한 연구 (A study on Modeling and Experiments of an Eddy Current Damping)

  • 박정삼;곽동기;배재성;황재혁
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.250-254
    • /
    • 2008
  • Eddy currents are induced when a nonmagnetic conductive material is moving subjected to the magnetic field due to a permanent magnet. These currents circulates in the conductive material and are dissipated, causing a repulsive force between the magnet and the conductor. Using this concept, the eddy current damping can be used as a viscous damping. The present study investigates the characteristics of a magnetic damping analytically and experimentally. The theoretical model of a eddy current damping is developed from electromagnetics and is verified from experiments. The drop test of a magnet in the cooper tube shows that the present model can accurately predict the damping force. Additionally, the dynamic test of a eddy current damping is carried to verify the present model.

  • PDF

초고속 자기부상열차용 LSM 설계 및 추력 측정 시험 (Design and Thrust Force Measurement of LSM for High-Speed Maglev Train)

  • 오세영;이창영;이주
    • 전기학회논문지
    • /
    • 제63권10호
    • /
    • pp.1473-1478
    • /
    • 2014
  • This paper deals with design and thrust force measurement of EMS type LSM for propulsion of the high-speed maglev train. The load of maglev train is calculated, and the design equations of the LSM are presented, and the LSM which is suitable for the operation of short-distance test track is designed. In addition, the finite element analysis is performed to confirm the back-EMF and thrust force characteristics of the LSM designed model. A short length LSM prototype model is manufactured. Finally, the thrust force of the LSM is measured by the method applying dc current to the stator winding instead of three-phase ac current. And the validity of the design and analysis is verified by this measurement.

역모델을 이용한 MR 댐퍼의 감쇠계수 제어 (Control of Damping Coefficients for the Shear Mode MR Dampers Using Inverse Model)

  • 나언주
    • 한국소음진동공학회논문집
    • /
    • 제23권5호
    • /
    • pp.445-455
    • /
    • 2013
  • A new linearization model for MR dampers is analyzed. The nonlinear hysteretic damping force model of MR damper can be modeled as a hyperbolic tangent function of currents, positions, and velicities, which is an algebraic function with constant parameters. Model parameters can be identified with numerical method using experimental force-velocity-position data obtained from various operating conditions. The nonlinear hysteretic damping force can be linearized with a given slope of damping coefficient if there exist corresponding currents to compensate for the nonlinearity. The corresponding currents can be calculated from the inverse model when the given linear damping force is set equal to the nonlinear hysteretic damping force. The linearization controller is realized in a DSP controller such that the corresponding currents to satisfy a given damping coefficient should be calculated. Experiments show that the current inputs to the MR damper produce linearized damping force with a given slope of the damping coefficient.

Experimental study on the tension of cables and motion of tunnel element for an immersed tunnel element under wind, current and wave

  • Wu, Hao;Rheem, Chang-Kyu;Chen, Wei;Xu, Shuangxi;Wu, Weiguo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.889-901
    • /
    • 2021
  • The tension of cables and motion response significantly affect safety of an immersed tunnel element in the immersion process. To investigate those, a hydrodynamic scale-model test was carried out and the model experiments was conducted under wind, current and wave loads simultaneously. The immersion standby (the process that the position of the immersed tunnel element should be located before the immersion process) and immersion process conditions have been conducted and illustrated. At the immersion standby conditions, the maximum force of the cables and motion is much larger at the side of incoming wind, wave and current, the maximum force of Element-6 (6 cables directly tie on the element) is larger than for Pontoon-8 (8 cables tie on pontoon of the element), and the flexible connection can reduce the maximum force of the mooring cables and motion of element (i.e. sway is expecting to decrease approximate 40%). The maximum force of the mooring cables increases with the increase of current speed, wave height, and water depth. The motion of immersed tunnel element increases with increase of wave height and water depth, and the current speed had little effect on it. At the immersion process condition, the maximum force of the cables decrease with the increase of immersion depth, and dramatically increase with the increase of wave height (i.e. the tension of cable F4 of pontoons at wave height of 1.5 m (83.3t) is approximately four times that at wave height of 0.8 m). The current speed has no much effect on the maximum force of the cables. The weight has little effect on the maximum force of the mooring cables, and the maximum force of hoisting cables increase with the increase of weight. The maximum value of six-freedom motion amplitude of the immersed tunnel element decreases with the increase of immersion depth, increase with the increase of current speed and wave height (i.e. the roll motion at wave height of 1.5 m is two times that at wave height of 0.8 m). The weight has little effect on the maximum motion amplitude of the immersed tunnel element. The results are significant for the immersion safety of element in engineering practical construction process.

Deformation in a nonlocal magneto-thermoelastic solid with hall current due to normal force

  • Lata, Parveen;Singh, Sukhveer
    • Geomechanics and Engineering
    • /
    • 제22권2호
    • /
    • pp.109-117
    • /
    • 2020
  • The present article is concerned about the study of disturbances in a homogeneous nonlocal magneto-thermoelastic medium under the combined effects of hall current, rotation and two temperatures. The model under assumption has been subjected to normal force. Laplace and Fourier transform have been used for finding the solution to the field equations. The analytical expressions for conductive temperature, stress components, normal current density, transverse current density and displacement components have been obtained in the physical domain using a numerical inversion technique. The effects of hall current and nonlocal parameter on resulting quantities have been depicted graphically. Some particular cases have also been figured out from the current work. The results can be very important for the researchers working in the field of magneto-thermoelastic materials, nonlocal thermoelasticity, geophysics etc.

주축 모터 동력을 이용한 절삭력 예측 (Cutting Force Estimation Using Spindle Motor Power)

  • 최영준;김기대;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.1088-1094
    • /
    • 1997
  • An indirect cutting torque and cutting force estimation method is presented. This method uses a time-domain model between the spindle motor power, which calculated form measured spindle motor current and voltage. Spindle motor power is linear with cutting torque in this model. The cutting force is proportional to the cutting torque. Using trial cut, parameters are determined. Static sensitivity is suitable for various cutting conditions. The presented method is verified under several cutting tests on the CNC horizontal machining center.

  • PDF