• 제목/요약/키워드: Force spectroscopy

검색결과 516건 처리시간 0.031초

항공기 주기환경이 대기부식위험도에 미치는 영향 (The Effect of Aircraft Parking Environment on Atmospheric Corrosion Severity)

  • 윤주희;이두열;박승렬;김민생;최동수
    • Corrosion Science and Technology
    • /
    • 제20권2호
    • /
    • pp.94-104
    • /
    • 2021
  • Atmospheric corrosion severity associated with aircraft parking environment was studied using metallic specimens, and temperature and humidity sensors installed at each aircraft operating base. Data were analyzed after a year of exposure. Silver was used to measure chloride deposition by integrating X-ray photoelectron spectroscopy depth profiles. Carbon steel was utilized to determine the corrosion rate by measuring the weight loss. The time of wetness was determined using temperature and humidity sensor data. Analysis of variance followed by Tukey's "honestly significant difference" test indicated that atmospheric environment inside the shelter varied significantly from that of unsheltered parking environment. The corrosion rate of unsheltered area also varies with the roof. Hierarchical clustering analysis of the measured data was used to classify air bases into groups with similar atmospheric corrosion. Bases where aircraft park at a shelter can be grouped together regardless of geographical location. Unsheltered bases located inland can also be grouped together with sheltered bases as long as the aircraft are parked under the roof. Environmental severity index was estimated using collected data and validated using the measured corrosion rate.

압입법에 의한 실리콘의 상전이 (Phase Transformation of Silicon by Indentation)

  • 김성순;이홍림
    • 한국세라믹학회지
    • /
    • 제39권12호
    • /
    • pp.1149-1152
    • /
    • 2002
  • 실리콘의 고압상을 연구하는 수단으로 압입 방법을 사용하였다. 실험에는 (100)과 (111) 실리콘 웨이퍼를 사용하였으며 하중유지 시간과 하중인가 속도에 따른 잔류상의 변화를 연구하였다. 압입 후의 상분석에는 Raman spectroscopy를 사용하였다. 하중 유지 시간의 실험결과 (111) 시편에서는 하중 유지 시간이 길어질수록 소성변형이 진행되어 고압상인 Si-III 와 Si-XII는 결정구조를 유지하지 못하고 사라지고 대신 a-Si가 관찰되었다. 하중 인가 속도 실험 결과 하중 인가 속도가 0.1 mm/min일 경우 모든 시편의 force/displacement 곡선에서 pop-in을 관찰할 수 있었다. Raman peak 분석 결과 이들 시편에서는 상전이가 관찰되었다. 5 mm/min의 하중인가 속도의 경우 (111) 시편에서는 급격한 변형의 증가 부분이 관찰되었으나 (100) 시편의 경우 관찰되지 않았다. 하중인가 속도가 느릴 경우 상전이 양상이 뚜렷하게 나타났으며 반대의 경우 상전이는 소량 관찰되거나 관찰되지 않았다. 이것은 하중인가속도가 상전이 영역의 부피에 영향을 주기 때문이라 판단된다.

Study on the Thermal Degradation Behavior of FKM O-rings

  • Lee, Jin Hyok;Bae, Jong Woo;Choi, Myoung Chan;Yoon, Yoo-Mi;Park, Sung Han;Jo, Nam-Ju
    • Elastomers and Composites
    • /
    • 제53권4호
    • /
    • pp.213-219
    • /
    • 2018
  • The degradation mechanism and physical properties of an FKM O-ring were observed with thermal aging in this experiment. From X-ray photoelectron spectroscopy (XPS) analysis, we could observe carbon (285 eV), fluoro (688 eV), and oxygen (531 eV) peaks. Before thermal aging, the concentration of fluoro atoms was 51.23%, which decreased to 8.29% after thermal aging. The concentration of oxygen atoms increased from 3.16% to 20.39%. Under thermal aging, the FKM O-ring exhibited debonding of the fluoro-bond by oxidation. Analysis of the C1s, O1s, and F1s peaks revealed that the degradation reaction usually occurred at the C-F, C-F2, and C-F3 bonds, and generated a carboxyl group (-COOH) by oxidation. Due to the debonding reaction and decreasing mobility, the glass transition temperature of the FKM O-ring increased from $-15.91^{\circ}C$ to $-13.79^{\circ}C$. From the intermittent CSR test, the initial sealing force was 2,149.6 N, which decreased to 1,156.2 N after thermal aging. Thus, under thermal aging, the sealing force decreased to 46.2%, compared with its initial state. This phenomenon was caused by the debonding reaction and decreasing mobility of the FKM O-ring. The S-S curve exhibited a 50% increase in modulus, with break at a low strain and stress state. This was also attributed to the decreasing mobility due to thermal aging degradation.

질소와 진공 분위기에서 에이징 영향에 따른 불화유기박막의 나노트라이볼러지 특성 평가 (Nanotribological Characterization of Annealed Fluorocarbon Thin Film in N2 and Vacuum)

  • 김태곤;김남균;박진구;신형재
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2002년도 춘계 기술심포지움 논문집
    • /
    • pp.193-197
    • /
    • 2002
  • The tribological properties and van der Waals attractive forces and the thermal stability of films are very important characteristics of highly hydrophobic fluorocarbon (FC) films for the long-term reliability of nano system. The effect of thermal annealing on films and van der Waals attractive forces and friction coefficient of films have been investigate d in this study. It was coated Al wafer which was treated O2 and Ar that ocatfluorocyclobutane ($C_4_{8}$) and Ar were supplied to the CVD chamber in the ratio of 2:3 for deposition of FC Films. Static contact angle and dynamic contact angle were used to characterize FC films. Thickness of films was measured by variable angle spectroscopy ellipsometer (VASE). Nanotribological data was got by atomic force microscopy (AFM) to measure roughness, lateral force microscopy (LFM) to measure friction force, and force vs. distance (FD) curve to evaluate adhesion force. FC films were cured in N2 and vacuum. The film showed the slight changes in its properties after 3 hr annealing. FTIR ATR studies showed the decrease of C-F peak intensity in the spectra as the annealing time increased. A significant decrease of film thickness has been observed. The friction force of Al surface was at least thirty times higher than ones with FC films. The adhesive force of bare Al was greater than 100 nN. After deposit FC films adhesive force was decreased to 40 nN. The adhesive force of films was decreased down to 10 nN after 24 hr annealing. During 24 hr annealing in $N_2$and vacuum at $100^{\circ}C$ film properties were not changed so much.

  • PDF

Prediction of tenderness in bovine longissimus thoracis et lumborum muscles using Raman spectroscopy

  • Maria Sumampa Coria;Maria Sofia Castano Ledesma;Jorge Raul Gomez Rojas;Gabriela Grigioni;Gustavo Adolfo Palma;Claudio Dario Borsarelli
    • Animal Bioscience
    • /
    • 제36권9호
    • /
    • pp.1435-1444
    • /
    • 2023
  • Objective: This study was conducted to evaluate Raman spectroscopy technique as a noninvasive tool to predict meat quality traits on Braford longissimus thoracis et lumborum muscle. Methods: Thirty samples of muscle from Braford steers were analyzed by classical meat quality techniques and by Raman spectroscopy with 785 nm laser excitation. Water holding capacity (WHC), intramuscular fat content (IMF), cooking loss (CL), and texture profile analysis recording hardness, cohesiveness, and chewiness were determined, along with fiber diameter and sarcomere length by scanning electron microscopy. Warner-Bratzler shear force (WBSF) analysis was used to differentiate tender and tough meat groups. Results: Higher values of cohesiveness and CL, together with lower values of WHC, IMF, and shorter sarcomere were obtained for tender meat samples than for the tougher ones. Raman spectra analysis allows tender and tough sample differentiation. The correlation between the quality attributes predicted by Raman and the physical measurements resulted in values of R2 = 0.69 for hardness and 0,58 for WBSF. Pearson's correlation coefficient of hardness (r = 0.84) and WBSF (r = 0.79) parameters with the phenylalanine Raman signal at 1,003 cm-1, suggests that the content of this amino acid could explain the differences between samples. Conclusion: Raman spectroscopy with 785 nm laser excitation is a suitable and accurate technique to identify beef with different quality attributes.

Atom-by-Atom Creation and Evaluation of Composite Nanomaterials at RT based on AFM

  • Morita, Seizo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.73-75
    • /
    • 2013
  • Atomic force microscopy (AFM) [1] can now not only image individual atoms but also construct atom letters using atom manipulation method [2]. Therefore, the AFM is the second generation atomic tool following the well-known scanning tunneling microscopy (STM). The AFM, however, has the advantages that it can image even insulating surfaces with atomic resolution and also measure the atomic force itself between the tip-apex outermost atom and the sample surface atom. Noting these advantages, we have been developing a novel bottom-up nanostructuring system, as shown in Fig. 1, based on the AFM. It can identify chemical species of individual atoms [3] and then manipulate selected atom species to the designed site one-by-one [2] to assemble complex nanostructures consisted of many atom species at room temperature (RT). In this invited talk, we will introduce our results toward atom-by-atom assembly of composite nanomaterials based on the AFM at RT. To identify chemical species, we developed the site-specific force spectroscopy at RT by compensating the thermal drift using the atom tracking. By converting the precise site-specific frequency shift curves, we obtained short-range force curves of selected Sn and Si atoms as shown in Fig. 2(a) and 2(b) [4]. Then using the atom-by-atom force spectroscopy at RT, we succeeded in chemical identification of intermixed three atom species in Pb/Sn/Si(111)-(${\surd}3$'${\surd}3$) surface as shown in Fig. 2(c) [3]. To create composite nanostructures, we found the lateral atom interchange phenomenon at RT, which enables us to exchange embedded heterogeneous atoms [2]. By combining this phenomenon with the modified vector scan, we constructed the atom letters "Sn" consisted of substitutional Sn adatoms embedded in Ge adatoms at RT as shown in Fig. 3(a)~(f) [2]. Besides, we found another kind of atom interchange phenomenon at RT that is the vertical atom interchange phenomenon, which directly interchanges the surface selected Sn atoms with the tip apex Si atoms [5]. This method is an advanced interchangeable single atom pen at RT. Then using this method, we created the atom letters "Si" consisted of substituted Si adatoms embedded in Sn adatoms at RT as shown in Fig. 4(a)~(f) [5]. In addition to the above results, we will introduce the simultaneous evaluation of the force and current at the atomic scale using the combined AFM/STM at RT.

  • PDF

RF-PECVD로 증착된 DLC 박막의 온도 변화에 따른 트라이볼로지 특성 (The Influence of the Temperature Increase on the Tribological Behavior of DLC Films by RF-PECVD)

  • 이영제;조용경;신윤하
    • Tribology and Lubricants
    • /
    • 제22권3호
    • /
    • pp.127-130
    • /
    • 2006
  • DLC (Diamond Like Carbon) films show very desirable surface interactions with high hardness, low friction coefficient, and good wear-resistance properties. The friction behavior of hydrogenated DLC film is dependent on tribological environment, especially surrounding temperature. In this work, the tribological behaviors of DLC (Diamond-like carbon) films, prepared by the radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) method, were studied in elevated temperatures. The ball-on-disk tests with DLC films on steel specimens were conducted at a sliding speed of 60 rpm, a load of 10N, and surrounding various temperatures of $25^{\circ}C,\;40^{\circ}C,\;55^{\circ}C\;and\;75^{\circ}C$. The results show considerable dependency of DLC tribological parameters on temperature. The friction coefficient decreased as the surrounding temperature increased. After tests the wear tracks of hydrogenated DLC film were analyzed by optical microscope, scanning electron spectroscopy (SEM) and Raman spectroscopy. The surface roughness and 3-D images of wear track were also obtained by an atomic force microscope (AFM).

Comparison of Existing Methods to Identify the Number of Graphene Layers

  • Sharbidre, Rakesh Sadanand;Lee, Chang Jun;Hong, Seong-Gu;Ryu, Jae-Kyung;Kim, Taik Nam
    • 한국재료학회지
    • /
    • 제26권12호
    • /
    • pp.704-708
    • /
    • 2016
  • The unique characteristics of graphene make it an optimal material for crucial studies; likewise, its potential applications are numerous. Graphene's characteristics change with the number of total layers, and thus the rapid and accurate estimation of the number of graphene layers is essential. In this work, we review the methods till date used to identify the number of layers but they incorporate certain drawbacks and limitations. To overcome the limitations, a combination of these methods will provide a direct approach to identify the number of layers. Here we correlate the data obtained from Raman spectroscopy, optical microscopy images, and atomic force microscopy to identify the number of graphene layers. Among these methods, correlation of optical microscopy images with Raman spectroscopy data is proposed as a more direct approach to reliably determine the number of graphene layers.

Interaction of Bilobalide and Ginkgolides B with Bovine Serum Albumin: A Fluorescence Quenching Study

  • Chen, Yan;Wang, Ruijun;Wang, Shusheng;Yang, Yi;Li, Shaofei;Kai, Guiqing
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권9호
    • /
    • pp.3261-3266
    • /
    • 2011
  • The interaction of bilobalide (BB) and ginkgolides B (GB) with bovine serum albumin (BSA) was investigated by fluorescent technique and UV/vis absorption spectroscopy. The results showed that BB and GB could intensively quench the fluorescence of BSA through a static quenching procedure. The binding constants (Ka) and the average binding distance between the donor (BSA) and the acceptor (ginkgolides) were obtained ($r_{BB}$ = 5.33 nm and $r_{GB}$ = 4.20 nm) by the theory of non-radiation energy transfer, and then the thermodynamic parameters such as ${\Delta}S^0$ (0.17-0.32 kJ/mol), ${\Delta}G^0$ (-20.76 ~ -17.79 kJ/mol) and ${\Delta}H^0$ (32.47-76.52 kJ/mol) could be calculated, respectively. All these results revealed that the interaction of BB and GB with BSA were driven mainly by hydrophobie force. The synchronous fluorescence spectroscopy was applied to examine the effect of two ginkgolides on the configuration of BSA. The configuration alteration of BSA could be induced by the hydrophobicitv environment of tyrosine with the increase of the drug concentration.

ZnS/CdS 분말과 박막의 구조 및 광학적 특성 (Structural and Optical Characteristics of ZnS/CdS Powders and Thin Films)

  • 장기석
    • 한국군사과학기술학회지
    • /
    • 제13권4호
    • /
    • pp.659-664
    • /
    • 2010
  • The ZnS/CdS thin films were made using 99.99% ZnS and CdS(Aldrich) powders in $7{\times}10^{-6}torr$. The ZnS layer was coated over the CdS layer on an AlOx membrane within a vacuum, at the average speed of $1{\AA}/sec$. After studying the ZnS/CdS and CdS thin films(both with the dimensions of 2.52nm), using fluorescence spectroscopy and comparing the respective results together, we found that although both of the resulting spectra peaked at 390nm, the ZnS/CdS thin films showed a narrower peak, and a higher intensity of photoluminescence than the CdS thin films. The particles of ZnS/CdS thin films also proved to be more homogeneous in size. In addition, the ZnS layer acted as a protective layer. Also, after studying the spectra of ZnS/CdS thin films taken 30 days after their preparation, we found no signs of aging. These results were verified through the scanning electron microscopy(SEM), EDX analysis, thin film X-ray diffraction, and luminescence spectroscopy.