• Title/Summary/Keyword: Force field

Search Result 2,598, Processing Time 0.028 seconds

Electromagnetic Wave and Rotating

  • Oh, Hung-Kuk
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.124-125
    • /
    • 2001
  • The electro-magnetic vector equation(F=$qv{\times}B$ ; F:force, B:magnetic field, q:plus charge, v :velocity of the charge) explains well about the rotations of electron and positron under the magnetic field[Ref.1], as in Fig.1(a). Because the electro-magnetic wave is also a motion of the alternating charge and magnetic field as in Fig.2, the force vector has all the time inwarding direction and then the wave has a rotating motion. The positron in the proton has constant charge and alternating one at the same time[Ref.2] and then the alternating charge makes the absorbing force with the alternating charge of the rotating wave ($\pi$-ray) around the nucleus[Ref.2]. (omitted)

  • PDF

Thrust Caused by Oscillating Two-Dimensional Hydrofoil Moving in Propagating Unsteady Flow Field (전파하는 변동유장 중 전진하며 동요하는 2차원 수중 날개에 의한 추력)

  • Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.40-46
    • /
    • 2012
  • This paper considers a two-dimensional hydrofoil that is fully submerged and oscillating with forward speed. The flow field is assumed to be a propagating vertical velocity field. Using the perturbation theory, the problem is linearized, and the leading-order lift force is surveyed. The thrust force is analytically derived as the second-order horizontal force. As an example, the lift and thrust for a flapping flat plate in heaving and pitching modes are analyzed. The parameters affecting the thrust are listed. The thrust is expressed in terms of the quadratic transfer functions in relation to the disturbances. The quadratic transfer functions are studied parametrically to assess the most favorable thrust.

MODEL ON THE DYNAMIC BEHAVIOR OF CONDUCTIVE FERROMAGNETIC MATERIAL WITH NEGLIGIBLE COERCIVITY

  • Kim, Dac-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.790-794
    • /
    • 1995
  • Differential equations governing dynamic behavior of toroid-shaped ferro-magnetic material having a small gap of uniform width were derived incorporating Maxwell equations of electromagnetic induction relevent to the system and Newtonian equation of motion. Once the external uniform magnetic field was applied within the material through dc-circuit around the toroid, gap begin to change which lead to the abrupt variation of field in the material and gap according to the differential equations already derived. Characteristics of current and electromotive force with respect to time in the circuit consisting of inductance and resistance in series could be predicted from numerical solutions of these equations. As current in the circuit increasesl, magnetic field in the material increases, thus, the gap starts to shrink due to increased attractive force between gap and elastic restoring force in the material. With an appropriate selection of elastic constant of toroidal ferromagnetic material and design of gap structure it is possible to obtain the specified in both linear and nonlinear magnetic characteristics, such as current dependent and independent inductance.

  • PDF

Multi-Functional Probe Recording: Field-Induced Recording and Near-Field Optical Readout

  • Park, Kang-Ho;Kim, Jeong-Yong;Song, Ki-Bong;Lee, Sung-Q;Kim, Jun-Ho;Kim, Eun-Kyoung
    • ETRI Journal
    • /
    • v.26 no.3
    • /
    • pp.189-194
    • /
    • 2004
  • We demonstrate a high-speed recording based on field-induced manipulation in combination with an optical reading of recorded bits on Au cluster films using the atomic force microscope (AFM) and the near-field scanning optical microscope (NSOM). We reproduced 50 nm-sized mounds by applying short electrical pulses to conducting tips in a non-contact mode as a writing process. The recorded marks were then optically read using bent fiber probes in a transmission mode. A strong enhancement of light transmission is attributed to the local surface plasmon excitation on the protruded dots.

  • PDF

The effect of field-line twist on the dynamic and electric current structures of emerging magnetic field on the Sun

  • An, Jun-Mo;Lee, Hwan-Hee;Kang, Ji-Hye;Magara, Tetsuya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.102.1-102.1
    • /
    • 2011
  • In this study we use three-dimensional magnetohydrodynamic simulations to investigate how the dynamic state of emerging magnetic field is related to the twist of field lines. Emerging magnetic field forms a magnetic structure on the Sun where various kinds of activity such as solar flares, jets, and coronal mass ejections are observed. To understand the physical mechanism for producing such activity, we have to know the dynamic nature of this structure. Since flares are the manifestation of rapidly dissipating electric current in the corona, we also investigate the distribution of current density inside the structure and examine how it depends on the field-line twist. To demonstrate the dynamic structure of emerging magnetic field, we focus on the factors characterizing the geometric property and stratification of emerging magnetic field, such as the curvature of field line and the scale height of field strength. These two factors show that emerging field forms a two-part structure in which the central part is close to a force-free state while the outer marginal part is in a fairly dynamic state where magnetic pressure force is dominant. We discuss how the field-line twist affects the two-part structure and also explain a possible relation between electric current structure and sigmoid observed in a preflare phase.

  • PDF

Eletromagnetic Field Analysis of SRM Due to Air Gap Eccentricity (Air Gap 편심에 따른 Switched Reluctance Motor의 전자기 가진력 해석)

  • 신현정;이동일;한승도
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.380.2-380
    • /
    • 2002
  • SRM(Switched Reluctance Motor) 내부의 Radial Force는 소음ㆍ진동의 주원인이 되는 가진력으로 작용하는 것으로 알려져 있다. 따라서 본 논문에서는 Radial Force의 주 요인인 Motor 내부의 Air Gap 편심에 따른 반경방향의 전자기 가진력을 전자장 수치해석을 통하여 해석하고 소음ㆍ진동에 미치는 영향을 분석하였다. Air Gap 편심량을 변화시켜 가면서 Stator, Rotor의 Local Force와 Gloval Force인 Torque Fluctuation을 해석하고 이를 실험 결과와 비교함으로서 해석결과의 타당성을 입증하였다.

  • PDF

Moving force identification from bridge dynamic responses

  • Yu, Ling;Chan, Tommy H.T.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.3
    • /
    • pp.369-374
    • /
    • 2005
  • A big progress has been made for moving force identification from bridge dynamic responses in recent years. Current knowledge and the potentials on moving force identification methods are reviewed in this paper under main headings below: background of moving force identification, experimental verification in laboratory and its application in field.

Navigation Technique of Unmanned Vehicle Using Potential Field Method (포텐셜 필드 기법을 이용한 무인차량의 자율항법 개발)

  • Lee, Sang-Won;Moon, Young-Geun;Kim, Sung-Hyun;Lee, Min-Cheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.8-15
    • /
    • 2011
  • This paper proposes a real-time navigation algorithm which integrates the artificial potential field (APF) for an unmanned vehicle in the unknown environment. This approach uses repulsive potential function around the obstacles to force the vehicle away and an attractive potential function around the goal to attract the vehicle. In this research, laser range finder is used as range sensor. An obstacle detected by the sensor creates repulsive vector. Differential global positioning system (DGPS) and digital compass are used to measure the current vehicle position and orientation. The measured vehicle position is also used to create attractive vector. This paper proposes a new concept of potential field based navigation which controls unmanned vehicle's speed and steering. The magnitude of repulsive force based on the proposed algorithm is designed not to be over the magnitude of attractive force while the magnitude is increased linearly as being closer to obstacle. Consequently, the vehicle experiences a generalized force toward the negative gradient of the total potential. This force drives the vehicle downhill towards its goal configuration until the vehicle reaches minimum potential and it stops. The effectiveness of the proposed APF for unmanned vehicle is verified through simulation and experiment.

Evaluation on the Lost Prestressing Force of an External Tendon Using the Combination of FEM and HGA: II. Experimental Verification and Field Applications (FEM과 HGA의 조합을 이용한 외부 긴장재의 손실 긴장력 평가: II. 실험적 검증 및 현장적용)

  • Jang, Hang-Teak;Noh, Myung-Hyun;Park, Kyu-Sik;Park, Taehyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.5 s.57
    • /
    • pp.121-132
    • /
    • 2009
  • This paper introduces an experimental verification and a field application of the proposed technique using the combination of FEM and HGA about the loss prestressing force of an exteranl tendon by above same authors. The vibration tests have been conducted by using a laboratory models and the externally prestressed tendon at the field and the natural frequencies are extracted from the vibration tests. The proposed technique based on the extracted natural frequencies is applied. It is seen that the errors in the tension and lost prestressing force by proposed technique are about 4% from a laboratory model test. For the model verification at field, exact modeling has beem made with Rayleigh damping. It is seen that the error in the tension by proposed technique is less than 1% and the estimated lost prestressing force converges less than the exact value.

Hysteresis Model of Damping Forces of MR Damper for a Passenger Car (승용차용 MR 댐퍼의 댐핑력 이력현상 모델)

  • 이순규;최승복
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.189-197
    • /
    • 2001
  • This paper presents hysteresis models of damping forces of a magneto-rheological (MR) damper which is applicable to a middle-sized passenger vehicle. After manufacturing a cylindrical type of the MR damper, its field-dependant damping force and hysteresis behavior are experimentally evaluated. Three different models ; Bingham model, Bouc-Wen model and Polynomial model are provided to predict the hysteretic damping force. The damping force characteristics predicted from three different models are compared with the measured results under various excitation conditions.

  • PDF