• Title/Summary/Keyword: Force feedback

Search Result 554, Processing Time 0.038 seconds

End point and contact force control of a flexible manipulator (유연한 조작기의 끝점위치 및 접촉력 제어)

  • 최병오
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.552-558
    • /
    • 1993
  • In this paper, control of a planar two-link structurally flexible robotic manipulator executing unconstrained and constrained maneuvers is considered. The dynamic model, which is obtained by using the extended Hamilton's principle and the Galerkin criterion, includes the impact force generated during the transition from unconstrained to constrained segment of the robotic task. A method is presented to obtain the linearized equations of motion in Cartesian space for use in designing the control system. The linear quadratic Gaussian with loop transfer recovery (LQG/LTR) design methodology is exploited to design a robust feedback control system that can handle modeling errors and sensor noise, and operate on Cartesian space trajectory errors. The LQG/LTR compensator together with a feedforward loop is used to control the flexible manipulator. Simulated results are presented for a numerical example.

  • PDF

Compliant control of a flexible manipulator featuring piezoactuator (압전작동기를 갖는 유연매니퓰레이터의 컴플라이언트 제어)

  • 김형규;최승복
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.722-725
    • /
    • 1996
  • This paper presents a new control strategy for the position and force control of a flexible manipulator. The governing equation of motion of a two-link flexible manipulator which features a piezoceramic actuator is derived via Hamilton's principle. The control torque of the motor to command desired position and force is determined by a sliding mode controller. This controller is formulated to take account of parameter uncertainties and external disturbances. During the commanded motion, undesirable oscillation is actively suppressed by applying a feedback control voltage to the piezoceramic actuator. Consequently, an accurate compliant motion control of the flexible manipulator is achieved. Computer simulations are undertaken in order to demonstrate the effectiveness of the proposed control methodology.

  • PDF

Fuzzy Estimator for Gain Scheduling and its Appliation to Magnetic Suspension

  • Lee, Seon-Ho;Lim, Jong-Tae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.106-110
    • /
    • 2001
  • The external force disturbance is the one of the main causes that deteriorate the performance of the magnetic suspension. Thus, this paper develops a fuzzy estimator for gain scheduling control of magnetic suspension system suffering from the unknown disturbance. The propose fuzzy estimator computes the disturbance injected to the plant the gain scheduled controller generates the corresponding stabilizing control input associated with estimated disturbance. In the simulation results we confirm the novelty of the proposed control scheme comparing with the other method using a feedback linearization.

  • PDF

ZMP Compensation Algorithm for Stable Posture of a Humanoid Robot

  • Hwang, Byung-Hun;Kong, Jung-Shik;Lee, Bo-Hee;Kim, Jin-Geol;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2271-2274
    • /
    • 2005
  • The desired ZMP is different from the actual ZMP of a humanoid robot during actual walking and stand upright. A humanoid robot must maintain its stable posture although external force is given to the robot. A humanoid robot can know its stability with ZMP. Actual ZMP may be moved out of the foot-print polygons by external disturbance or uneven ground surfaces. If the position of ZMP moves out of stable region, the stability can not be guaranteed. Therefore, The control of the ZMP is necessary. In this paper, ZMP control algorithm is proposed. Herein, the ZMP control uses difference between desired ZMP and actual ZMP. The proposed algorithm gives reaction moment with ankle joint when external force is supplied. 3D simulator shows motion of a humanoid robot and calculated data.

  • PDF

Electromagnetic Actuator for Active Vibration Control of Precise System (초정밀 시스템의 능동 진동제어용 전자기 액츄에이터)

  • Lee, Joo-Hoon;Jeon, Jeong-Woo;Hwang, Don-Ha;Kang, Dong-Sik;Choi, Young-Kiu
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.228-230
    • /
    • 2005
  • In this paper, we address an active vibration control system, which suppresses the vibration engaged by magnetically levitated stage. The stage system consists of a levitating platen with four permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion via the vertical and horizontal forces. In the stage system, which represents the settling-time critical system, the motion of the platen vibrates mechanically. We designed an active vibration control system for suppressing vibration due to the stage moving. The command feedforward with inertial feedback algorithm is used for solving stage system's critical problems. The components of the active vibration control system are accelerometers for detecting stage tables's vibrations, a digital controller with high precise signal converters. and electromagnetic actuators.

  • PDF

A new approach to passive bilateral teleoperation with varying time delay (가변 시간 지연에 대해 안정한 쌍방향 텔레오퍼레이션)

  • Zhang, Changlei;Lee, Yee-Dong;Zhang, Yuanliang;Chong, Kil-To
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.23-25
    • /
    • 2005
  • This paper is devoted to the passivity based control in bilateral teleoperation for varying time delay. Toimprove the stability and task performance, master and slave in bilateral teleoperation must be coupled via the network through which the force and velocity are communicated. However, time delay existing in the transmission channel is a long standing impediment to bilateral control and can destabilize the system, even if the system is stable without time delay, In this paper, we investigate how the varying time delay affects the advanced teleoperation stability and results in an out-of-control status. A new approach based on passivity control has been bilaterally designed for both the master and slave sites and the simulation result will verify that our approach is better and effective for passive bilateral teleoperation.

  • PDF

Design and fabrication of a 2D haptic interface apparatus and the realization of a virtual air-hockey system using the device (2D 햅틱 인터페이스 장치 설계 및 이를 이용한 가상 에어하키 시스템 구현)

  • Back, Jong-Won;Kang, Ji-Min;Yong, Ho-Joong;Choi, Dae-Sung;Jang, Tae-Jeong
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.78-80
    • /
    • 2005
  • Haptic interface apparatus is the device which can offer users virtual reality not only by visualization of virtual space but also by force or tactile feedback. In this paper, we designed and fabricated a 2D haptic interface device that can be used for various purposes, and implemented a virtual air-hockey system that users can easily find in game rooms. By suitable modeling and haptic rendering, users can feel the impact and the reaction force with his/her hand holding the handle through 2D haptic interface device when he/she hit an air-hockey puck with the handle. Through the trial demonstration. we observed the reasonable effect of direction and speed of a ball like doing in reality.

  • PDF

A Five Degree-of-freedom Pen-based Cable-suspended Haptic Interface

  • Park, Kyihwan;Tie Yun;Byunghoon Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.25.4-25
    • /
    • 2001
  • In this paper, a five degree-of-freedom haptic device is proposed. The proposed haptic device has a pen which is suspended by tensioned six strings. Human operator handles the pen. Six DC motors are used as actuators to generate tensions in six strings to make resultant force feedback at the pen to the human operator Six encoders are used for calculating the movement of the pen. A digital controller is used for generate control signals for the suitable tension in the six strings. A current amplifiers is used for amplifying the control signals. Cable-suspended system has advantages of structure simplicity (only with several strings driven by motors without using other tensioning mechanisms), low inertia, and high force-to-weight ratio. Pen-based system has advantages of compactness and ...

  • PDF

Impedance Control for Haptic Interface using Parameter Estimation Algorithm

  • Park, Heon;Lee, Sang-Chul;Lee, Soo-Sung;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.119.1-119
    • /
    • 2001
  • Teleoperation enables an operator to manipulate remote objects. One of the main goals in teleoperation researches is to provide the operator with the feeling of the telepresence, being present at the remote site. For these purposes, a master robot must be designed as a bilateral control system that can transmit position/force information to a slave robot and feedback the interaction force. A newly proposed impedance algorithm is applied for the control of a haptic interface that was developed as a master robot. With the movements of the haptic interface for position/for co commands, impedance parameters are varying always. When the impedance parameters between an operator and ...

  • PDF

Study on the Active Vibration Control of Magnetic Bearing System using $H_{\infty}$ Controller (능동 자기 베어링 제어를 위한 $H_{\infty}$ 제어기 설계)

  • 고무일;이경백;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.303-306
    • /
    • 1997
  • Magnetic bearings have been adopted to support the rotor by electromagnetic force without mechanical contact and have many advantages. The application of the magnetic bearings have become more and more widespread in recent years. But magnetic bearings require feedback control for stable operation because they are inherently open loop unstable systems. In this study, H infinity controller has been applied for rotor-magnetic bearing system for vibration control. The result showed that H infinity controller has better performance than PID controller through simulations.

  • PDF