• Title/Summary/Keyword: Force feedback

Search Result 554, Processing Time 0.027 seconds

The force feedback method for Master/Slave-Combined system

  • Young, Ko-Seong;Soo, Kwon-Dong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.171.3-171
    • /
    • 2001
  • The master/slave-combined system has a simplified and miniaturized structure formed by combining the master and slave that are the teleoperation system. In a certain situation, the operator may want to feel the magnified/reduced admittance of the real environments. Or he may want to feel the specific predefined admittance of the virtual environments. This paper presents a force feedback control structure for the master/slave-combined system. Through the proposed control structure, the operator can feel the predefined admittance of the virtual environments in case of free motion, and the magnified/reduced admittance of real environments in case of contact situation. It is discussed how the elements of the admittance effect ...

  • PDF

Robot manipulator's contact tasks on uncertain flexible objects

  • Wu, Jianqing;Luo, Zhiwei;Yamakita Masaki;Ito, Koji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.460-463
    • /
    • 1995
  • The present paper studies a robot manipulator's contact tasks on the uncertain flexible objects. The flexible object's distributed parameter model is approximated into a lumped "position state-varying" model. By using the well-known nonlinear feedback compensation, the robot's control space is decomposed into the position control subspace and the object's torque control subspace. The optimal state feedback is designed for the position loop, and the robot's contact force is controlled through controlling the resultant torque on the object using model-reference simple adaptive control. Experiments of a PUMA robot interacting with an aluminum plate show the effectiveness of this control approach. approach.

  • PDF

A Study on Teleoperating Control Technology of the Industrial Robot Under the Limit Environment (극한환경작업을 위한 산업용 로봇의 원격제어기술에 관한 연구)

  • Baek, Seung-Hack;Hwang, Won-Jun;Jung, Sung-Won
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.3
    • /
    • pp.150-156
    • /
    • 2015
  • In this paper, it was proposed a new technology to improve the performance of the remote control in virtual reality applications. The operator must know the information of surroundings of the robot, collision possibility of the equipment, and force feedback of the manipulator. The time delay problem occurs in the tele-operating and it causes vibration and expressive power of the manipulator owing to bidirectional force feedback. We presented a new control method to control of the teleoperating system based on serial bus. The reliability is evaluated by simulation.

Mini-Teleoperation system with a Force-Feedback Haptic Interface within a Virtual Environment (가상환경에서 힘 반영 촉각장치를 이용한 소형 원격조정 시스템)

  • 김대현;김영동;이현의
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.116-122
    • /
    • 1998
  • This Paper presents some of challenges of creating feedback force, through manipulation of master manipulator, allowing the user to feel objects within a virtual environment. A sense of touch for the virtual environment. A sense of touch for the virtual environments was generated by a virtual compliance control method. In theis system data communication between the master and slave, we used TCP protocol. In the experiments. A position error between the master and slave arm was about $13.56^{\circ}$ in case that the master and slave arm had not compliance properties of the virtual object, while they have the its properties the position error reduced by $2.43^{\circ}$.

  • PDF

Design and Control of Haptic Device using Voice Coil Type Motor (보이스 코일형 모터를 이용한 햅틱 장치의 설계 및 제어)

  • Sung, Ha-Gyeong;Borm, Jin-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.10
    • /
    • pp.439-445
    • /
    • 2002
  • In this paper force feedback control system is investigated for improving the quality of the haptic feedback in virtual reality applications. We suggested the method of controlling the haptic device and modelling the virtual environment. Haptic device is composed of five bar link structure, voice coil motor, control board, and virtual environment modeling program. We applied voice coil motor in the actuating system for simple structure and easy control. Virtual environment modelling is constructed in PC, and the control signals of the actuators and the encoder data are transferred to the control system through USB. Experiment is performed to evaluate the characteristics of the haptic device.

A Study On Characteristics of Nozzle/Flapper Type Flow Control Servo Valve (노즐/플래퍼형 유량제어 서보밸브의 특성에 관한 연구)

  • 윤소남;강보식;성백주;김형의
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.54-62
    • /
    • 2000
  • The purpose of this study is to bring out the optimal design factors which effect on dynamic characteristics in the design of flow control servo valve with high response characteristics, and to verify the validity of the design factors. In this study, force feedback type flow control valve with nozzle/flapper and with no drain is studied. And, the effect of the parameters, such as fixed orifice, nozzle diameter, and maximum displacement between nozzle and flapper are analyzed. We have done simulations using the optimal design factors and simulink(Matlab) as a simulation tool, and verified the validity of our simulations by means of comparison our simulation results with an experimental results of another similar valve.

  • PDF

Mobile Haptic Interface for Large Immersive Virtual Environments: PoMHI v0.5 (대형 가상환경을 위한 이동형 햅틱 인터페이스: PoMHI v0.5)

  • Lee, Chae-Hyun;Hong, Min-Sik;Lee, In;Choi, Oh-Kyu;Han, Kyung-Lyong;Kim, Yoo-Yeon;Choi, Seung-Moon;Lee, Jin-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.2
    • /
    • pp.137-145
    • /
    • 2008
  • We present the initial results of on-going research for building a novel Mobile Haptic Interface (MHI) that can provide an unlimited haptic workspace in large immersive virtual environments. When a user explores a large virtual environment, the MHI can sense the position and orientation of the user, place itself to an appropriate configuration, and deliver force feedback, thereby enabling a virtually limitless workspace. Our MHI (PoMHI v0.5) features with omnidirectional mobility, a collision-free motion planning algorithm, and force feedback for general environment models. We also provide experimental results that show the fidelity of our mobile haptic interface.

  • PDF

Integration of Binocular Stereopsis and Haptic Sensation in Virtual Environment

  • Ishii, Masahiro;Cai, Yi;Sato, Makolto
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1998.06b
    • /
    • pp.67-72
    • /
    • 1998
  • The paper aims to present a new human-scale haptic advice for virtual environment named Scaleable-SPIDAR (Space Interface Device for Artificial Reality), which can provides different aspects of force feedback sensations, associated mainly with weight, contact and inertia, to both hands within a cave-like space. Tensioned string techniques are used to generate such haptic sensations, while keeping the space transparent and unbulky. The device is scaleable so as to enclose different cave-like working spaces. Scaleable-SPIDAR is coupled with a large screen where a computer generated virtual world is displayed. The used approach is shown to be simple, safe ad sufficiently accurate for human-scale virtual environment.

  • PDF

Gain-scheduled controller design of an Active Suspension System with an Asymmetric Hydraulic Cylinder using Feedback linearization technique & optimal (비대칭형 유압 실린더를 사용한 능동현가 시스템에서의 궤한 선형화와 최적제어기법을 이용한 이득계획제어기 설계)

  • Jang, Yu-Jin;Kim, Sang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.452-454
    • /
    • 1998
  • Asymmetric cylinders are usually used as an actuator of active suspensions. The conventional optimal controller design does not include actuator dynamics as a state. and force controller is needed to track the desired force. But the actuator is not ideal, so performance of an active suspension system is degraded. In this paper, we take account nonlinear actuator dynamics and obtain a linear model using a feedback linearization technique then apply optimal control method. For real time application, gain-scheduling method is used. Effectiveness of proposed method is demonstrated by numerical simulation of 1/4 car model.

  • PDF

Variable Gain Feedback Control considering Stroke Saturation (스트로크 포화를 고려한 가변이득 피드백제어)

  • 황성호;고철수;민경원;정진욱
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.375-382
    • /
    • 2001
  • This paper deals with the compensation method of AMD stroke by adopting variable gain feedback control strategy. The gains, generally known to be constant, are designed to have variable values according to the structural responses and the AMD stroke. This strategy has the advantage of compensating AMD stroke under any kind of loadings, on the other hand the conventional strategies work only under the specific loading. The strategy shows that the AMD stroke is compensated to prevent the stroke saturation and the control force is found not affected by the compensating operation while the control force is reduced and the control efficiency is decreased during the compensating operation in the conventional strategies.

  • PDF