• Title/Summary/Keyword: Force feedback

Search Result 554, Processing Time 0.028 seconds

HASEL Actuator Study for Tactile Feedback Device (촉감 피드백을 위한 유압증폭자기치유형 정전식 액추에이터 연구 개발)

  • Song, Kahye
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.1
    • /
    • pp.12-16
    • /
    • 2021
  • Attempts are being made to provide various tactile feedbacks to user. In particular, a variety of soft actuators are being inserted into the tactile feedback device to give a more flexible, soft and strong stimulation. In this study, a basic study was performed to utilize a hydraulically amplified self-healing electrostatic (HASEL) actuator as a tactile feedback actuator. The HASEL actuator showed great displacement and force with a simple circuit configuration. In particular, by making the actuator in a circular shape, the angle was reduced and the electrode was arranged in a ring shape to maximize the displacement of the central part. As a result, the HASEL actuator showed a displacement difference according to the input waveform. In addition, in order to use it safely as an actuator for tactile feedback, we covered the surface with silicone and confirmed that the actuator works well. Using these actuators, it will be possible to manufacture a lightweight, portable tactile feedback device.

An Optimum Design of the Tactile Feedback Device using the Electromagnetic Attractive Force by the Probable Flux Paths Method (가정 자로법에 의한 전자기 흡입력의 촉각궤환장치의 최적설계)

  • 이정훈;장건희;최동훈;박종오;이종원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.464-478
    • /
    • 1998
  • In teleoperation, it is important for an operator to feel as if he really were in a distant place. To realize this objective, the various information from a remote site must be presented to the operator. Even though tactile information is very important to efficiently execute a task, it is not yet sufficiently provided for the operator. In this paper, we propose the new mechanism that can provide the more dexterous tactile information to the operator This device utilizing the electromagnetic force is designed to be compact and light enough to be attached to the fingerpad, and designed to be controlled continuously. The magnetic circuit is derived by the probable flux paths method in order to take forces at any given dimension. An optimization technique is also proposed to maximize the tactile force that humans can perceive under the same conditions. The objective function is formulated as maximizing displacements indented on the fingerpad, considering the mechanism of human tactile perception. The optimization formulation is subject to the geometric and rising temperature constraints in the coil. It is demonstrated that, by optimization, the tactile force increases by 24%, compared with that obtained from the initial design.

  • PDF

Force and Position Control of a Two-Link Flexible Manipulator with Piezoelectric Actuators (압전 작동기를 갖는 2 링크 유연 매니퓰레이터의 힘 및 위치 제어)

  • 김형규;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.428-433
    • /
    • 1997
  • This paper presents a new control strategy for the position and force control of flexible manipulators. The governing equation of motion of a two-link flexible manipulator which features piezoceramic actuators bonded on each flexible beam is derived via Hamilton's principle. The control torque of the motor to command desired position and force is determined by a sliding mode controller on the basis of the rigid-mode dynamics. In the controller formulation, the sliding mode controller with perturbation estimation(SMCPE) is adopted to determine appropriate control gains. The SMCPE is then incorporated with the fuzzy technique to mitigate inherent chattering problem while maintaining the stability of the system. A set of fuzzy parameters and control rules are obtained from a relation between estimated perturbation and actual perturbation. During the commanded motion, undesirable oscillation is actively suppressed by applying feedback control voltages to the piezoceramic actuators. These feedback voltages are also determined by the SMCPE. Consequently, accurate force and position control of a two-link flexible manipulator are achieved. Computer simulations are undertaken in order to demonstrate the effectiveness of the proposed control methodology.

  • PDF

Fast and Safe Contact Establishment Strategy for Biped Walking Robot (이족 보행 로봇을 위한 빠르고 안전한 접촉 생성 전략)

  • Lee, Hosang;Jung, Jaesug;Ahn, Junewhee;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.147-154
    • /
    • 2021
  • One of the most challenging issues when robots interact with the environment is to establish contact quickly and avoid high impact force at the same time. The proposed method implements the passive suspension system using the redundancy of the torque-controlled robot. Instead of utilizing the actual mechanical compliance, the distal joints near the end-effector are controlled to act as a virtual spring-damper system with low feedback gains. The proximal joints are precisely controlled to push the mid-link, which is defined as the boundary link between the proximal and distal joints, towards the environment with high feedback gains. Compared to the active compliance methods, the contact force measurements or estimates are not required for contact establishment and the control time delay problems do not occur correspondingly. The proposed method was applied to the landing foot control of the 12-DoF biped robot DYROS-RED in the simulations. In the results, the impact force during landing was significantly reduced at the same collision speed.

Development of high-power haptic vibration actuator module and interface based on bidirectional electrostatic force driving structure (양방향 정전기력 구동 구조에 기반한 고출력 햅틱 진동 액추에이터 모듈 및 인터페이스 개발)

  • Kim, Jae-Ik;Lee, Jae-Kyung;Park, Young-Hwan;Seo, Jeong-Tae;Yang, Tae-Heon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.662-667
    • /
    • 2021
  • Vibrotactile feedback is a major function of the latest touch displays, which greatly improves the user's operability and immersion when interacting with the interface on the screen. In this study, we propose a vibrotactile actuator suitable for mounting on the back side of a mid- to large-sized display because it can generate a strong vibration output by applying an electrostatic force-based mechanism and can be manufactured in a thin flat panel type. The proposed actuator was developed in a structure capable of amplifying the vibration force by alternating up and down with electrostatic force by the upper and lower electrodes that are spaced apart from the electrically grounded mass suspended from a radial leaf spring. As a result of the performance evaluation, the developed bar-type module with two built-in actuators showed excellent vibration output of up to 3.3 g at 170 Hz, confirming the possibility of providing haptic feedback in medium and large touch displays.

Observer Based Sensorless Rorce Control of Robot Manipulator

  • Suh, Il-Hong;Eom, Kwang-Sik;Lee, Chang-Eun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.803-806
    • /
    • 1997
  • In this paper, a force estimation method is proposed for the sensorless force control. For this, a disturbance observer is applied to each joint of an n degrees of freedom manipulator to obtain a simple equivalent robot dynamics(SERD) being represented as an n independent double integrator system. To estimate the output of disturbance observer in the absence of external force, the observer estimator is designed, where the uncertain parameters of the robot manipulator are adjusted by gradient method to minimize the output between the disturbance observer and the observer estimator. When the external force is exerted, the external force is estimated using the difference between the output of disturbance observer which include the external torque signal and that of observer estimator. And then, a force controller is designed for force feedback control employing the estimated force signal. To verify the effectiveness of the proposed force estimation method, several numerical examples are illustrated for the 2-axis planar type robot manipulator.

  • PDF

A Ftudy of Force Generation Algorithm Based on Virtual Environments (가상환경에서의 힘생성기법 연구)

  • 김창희;황석용;김승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1714-1717
    • /
    • 1997
  • A human operator is able to perform some tasks smoothly with force feedvack for the teleoperation or a virtual device in a the virtual environments. This paper describes a virtual force generation method with which operator can feel the interactive force between virtula robot and artificial environments. A virtual force generation algortihm is applied to generate the contact force at the arbitrary point of virtual robot, and the virtual force is displayed to the human operator via a tendon master arm consisted with 3 motors. Some experiments has beencarried out to verify the effectiveness of the force generation algorithm and usefulness of the developed backdrivable master arm.

  • PDF

Experimental Planning for Realistic Force Feedback in a Bicycle Simulator

  • Hun, Yang-Gi;Soo, Kwon-Dong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.117.5-117
    • /
    • 2001
  • This paper presents the key idea of handlebar reaction force and pedal resistance force generation in creating life-like feeling in KAIST bicycle simulator. Also, it provides methods to evaluate its reality level with given reaction force profile. In KAIST bicycle simulator, the pedal resistance force and the handlebar reaction force are calculated using the bicycle dynamic model. With the information handlebar angle, rider´s pedaling torque and road profile transmitted from the handlebar system, the pedal system and the visual part, the bicycle dynamics engine calculates the handlebar reaction force and the pedal velocity. The handlebar system and the pedal resistance system generate reaction force and resistance force transmitted from dynamics engine. However to make more realistic riding feeling ...

  • PDF

A Study on the Implementation of Edge-Following Insertion and grinding Tasks Using Robot Force Control (로보트의 힘제어를 이용한 윤곽 추적, 삽입 및 그라인딩 작업의 구현에 관한 연구)

  • 정재욱;이범희;고명삼
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.2
    • /
    • pp.207-216
    • /
    • 1991
  • In the case that the robot manipulator should respond to the variance and uncertainty of the environment in performing preforming precision tasks, it is indispensable that the robot utilizes the various sensors for intrlligence. In this paper, the robot force control method is implemented with a force/torque sensor, two personal computers, and a PUMA 560 manipulator for performing the various application tadks. The hybrid position/force control method is used to control the force and position axis separately. An interface board is designed to read the force/torque sensor output into the computer. Since the two computers should exchange the information quickly, a common memory board is designed. Before the algorithms of application tasks are developed, the basic force commands must be supplied. Thus, the MOVE-UNTIL command is used at the discrete time instant and, the MOVE-COMPLY is used at the continuous time instant for receiving the force feedback information. Using the two basic force commands, three application algorithms are developed and implemented for edge-following, insertion, and grinding tasks.

  • PDF

Effects of Visual Feedback Treadmill Gait Training Program Combined with Virtual Reality Technology and a Force Plate Measurement System on Gait Ability and Quality of Life in Stroke Patients (가상현실과 힘판을 통한 시각적 되먹임 트레드밀 보행훈련이 뇌졸중 환자의 보행능력과 삶의 질에 미치는 영향)

  • Lee, Dong-Ryul
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.3
    • /
    • pp.363-373
    • /
    • 2020
  • The purpose of this study was to improve the gait ability and quality of life of stroke patients by combining virtual reality technology and a visual feedback gait training program with entertainment elements. Ten stroke patients with circumduction gait were selected. The visual feedback treadmill gait training program using virtual reality technology and a force plate measurement system was conducted 30 minutes a day, 5 days a week, with 25 sessions in 5 weeks. To investigate the effects of this gait training program, evaluations using the joint range-of-motion test, muscle activity tests, Berg balance scale (BBS), gait analysis, and stroke-specific quality-of-life scale (SS-QOL) were performed before and after intervention. Statistically significant differences were found in the joint range of motion and muscle activity of the affected side from the initial swing phase to the mid-swing phase of the gait cycle, dynamic balance, gait function, and quality of life (p <0.05). The results of this study indicate that the gait training program improved the foot drop, muscle activity, dynamic balance, and gait ability of stroke patients with circumduction gait, thereby improving the quality of life of the patients. Therefore, we recommend the application of the visual feedback treadmill gait training program using virtual reality technology and a force plate measurement system to improve gait ability and quality of life of stroke patients with circumduction gait.