• 제목/요약/키워드: Force component

검색결과 703건 처리시간 0.028초

A Variational Framework for Single Image Dehazing Based on Restoration

  • Nan, Dong;Bi, Du-Yan;He, Lin-Yuan;Ma, Shi-Ping;Fan, Zun-Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권3호
    • /
    • pp.1182-1194
    • /
    • 2016
  • The single image dehazing algorithm in existence can satisfy the demand only for improving either the effectiveness or efficiency. In order to solve the problem, a novel variational framework for single image dehazing based on restoration is proposed. Firstly, the initial atmospheric scattering model is transformed to meet the kimmel's Retinex variational model. Then, the green light component of image is considered as an input of the variational framework, which is generated by the sensitivity of green wavelength. Finally, the atmospheric transmission map is achieved by multi-resolution pyramid reduction to improve the visual effect of the results. Experimental results demonstrate that the proposed method can remove haze effectively with less memory consumption.

난삭재인 SKD11의 정면밀링 가공시 절삭특성에 관한 연구 (A Study on the Cutting Characteristics in the Machining of SKD11 by Face Milling)

  • 김형석;문상돈;김태영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.73-78
    • /
    • 1994
  • Wear and fracture mode of ceramic tool for hardened SKD11 steel was investigated by face milling in this study. The cutting force and Acoustic Emission(AE) signal were utilized to detect the wear and fracture of ceramic tool. The following conclusions were obtained : (1) The wear and fracture modes of ceramic tool are characterized by three types: \circled1wear which has normal wear and notch wear, \circled2 wear caused by scooping on the rake face, \circled3 large fracture caused by thermal crack in the rake face. (2) The wear behaviour of ceramic tool can be detected by the increase of mean cutting force and the variation of the AE RMS voltage. (3) The catastrophic fracture of ceramic tool can be detected by the cutting force(Fz-component). (4) As the hardness of work material increased, Acoustic Emission RMS value and mean cutting force(Fz) increased linearly, but the tool life decreased.

  • PDF

Metal Fastening 공법을 위한 Reverse Screw의 견인력 특성에 관한 연구 (A Study on the Pulling Force Characteristic of the Reverse Screw for the Metal Fastening Method)

  • 김태형;이성욱;한근조
    • 한국기계가공학회지
    • /
    • 제9권1호
    • /
    • pp.93-98
    • /
    • 2010
  • The metal fastening method is the new technology to repair cracks in the casting material using specially designed reverse screws. In this study, we conduct the finite element analysis to analyze the pulling force characteristic of a reverse screw, the core component of the metal fastening method, with respect to the change of the applying torque, frictional coefficient and front screw angle. The simplified analysis model with single screw pitch is proposed for convergency of the non-linear contact analysis. As a results, the pulling force of a reverse screw increase in proportion to the applying torque but exponentially decrease according to frictional coefficient. And also we can find the optimum front screw angle with the largest pulling force is $20^{\circ}$.

Development of a Six-Axis Force/Moment Sensor with Rectangular Taper Beams for an Intelligent Robot

  • Kim, Gab-Soon
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권4호
    • /
    • pp.419-428
    • /
    • 2007
  • This paper describes the development of a six-axis force/moment sensor with rectangular taper beams for an intelligent robot's wrist and ankle. In order to accurately push and pull an object with an intelligent robot's hand, and in order to safely walk with an intelligent robot's foot, the robot's wrist and ankle should measure three forces Fx, Fy, and Fz, and three moments Mx, My, and Mz simultaneously from the mounted six-axis force/moment sensor to the intelligent robot's wrist and ankle. Unfortunately, the developed six-axis force/moment sensor utilized in other industrial fields is not proper for an intelligent robot's wrist and ankle in the size and the rated output of the six-axis force/moment sensor. In this paper, the structure of a six-axis force/moment sensor with rectangular taper beams was newly modeled for an intelligent robot's wrist and ankle, and the sensing elements were designed by using the derived equations, following which the six-axis force/moment sensor was fabricated by attaching strain-gages on the sensing elements. Moreover, the characteristic test of the developed sensor was carried out by using the six-component force/moment sensor testing machine. The rated outputs from the derived equations agree well with those from the experiments. The interference error of the sensor is less than 2.87%.

Indirect force 측정 방법과 Pseudo-역행렬을 이용한 정밀한 Force 예측 (Precise Forces Prediction by Indirect Force Measurement and Pseudo-inverse Technique)

  • 심재술;안병하;하종훈;정현출
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.564-567
    • /
    • 1997
  • In the design of structure the forces acting on the structure are important parameter for noise and vibration control. However, in the complex structure, the forces at the injection point on the structure cannot be measured directly. Thus it is necessary to find out indirect force evaluation method. In this paper forces have been measured with in-situ vibration responses and system information. Three existing techniques of indirect force measurement, viz. direct inverse, principal component analysis and regularization have been compared. It has been shown that multi-vibration responses are essential for the precise estimation of the forces. To satisfy those conditions, Rotary compressor is adopted as test sample, because it is very difficult to measure the injection forces from internal excitation to shell. It has also been obtained that relatively higher force is transmitted though three welding paths to the compressor shell. It shows a good agreement between direct and indirect force evaluation with curvature shell and plate and is investigated the possibility of force evaluation of rotary compressor as a complex structure.

  • PDF

Experimental study on component performance in steel plate shear wall with self-centering braces

  • Liu, Jia-Lin;Xu, Long-He;Li, Zhong-Xian
    • Steel and Composite Structures
    • /
    • 제37권3호
    • /
    • pp.341-351
    • /
    • 2020
  • Steel plate shear wall with self-centering energy dissipation braces (SPSW-SCEDB) is a lateral force-resisting system that exhibits flag-shaped hysteretic responses, which consists of two pre-pressed spring self-centering energy dissipation (PS-SCED) braces and a wall plate connected to horizontal boundary elements only. The present study conducted a series of cyclic tests to study the hysteretic performances of braces in SPSW-SCEDB and the effects of braces on the overall hysteretic characteristics of this system. The SPSW-SCEDB with PS-SCED braces only exhibits excellent self-centering capability and the energy loss caused by the large inclination angle of PS-SCED braces can be compensated by appropriately increasing the friction force. Under the combined effect of the two components, the SPSW-SCEDB exhibits a flag-shaped hysteretic response with large lateral resistance, good energy dissipation and self-centering capabilities. In addition, the wall plate is the primary energy dissipation component and the PS-SCED braces provide supplementary energy dissipation for system. The PS-SCED braces can provide up to 90% self-centering capability for the SPSW-SCEDB system. The compressive bearing capacity of the wall plate should be smaller than the horizontal remaining restoring force of the braces to achieve better self-centering effect of the system.

틸팅차량용 휠 제동장치의 스퀼 소음 해석 (Analysis on the Squeal Noise of Wheel Brake System for Tilting Train)

  • 차정권;박영일
    • 한국소음진동공학회논문집
    • /
    • 제20권1호
    • /
    • pp.98-105
    • /
    • 2010
  • Squeal, a kind of self-excited vibration, is generated by the friction between the disc and the friction materials. It occurs at the ending stage of the braking process, and radiates and audible frequency range of 1 kHz to 10 kHz. Squeal is generated from unstability because of the coupling between the translation and rotation of the system. This instability is caused by the follower force and follower force is normal component of the friction force. In this paper modal analysis of wheel brake system was performed in order to predict the squeal phenomenon. It was shown that the prediction of system instability is possible by FEM. A finite element model of that brake system was made. Some parts of a real brake was selected and modeled. Modal analysis method performs analyses of each brake system component. Experimental modal analysis was performed for each brake components and experimental results were compared with analytical results from FEM. To predict the dynamic unstability of a whole system, the complex eigenvalue analysis for assembly modeling of components confirmed by modal analysis is performed. The finite element models of the disk brake assembly have been constructed, and the squeal noise problems have been solved by complex eigenvalue analysis. The complex eigenvalue analysis results compared with real train test.

비선형 하중 조건을 고려한 밸런스 샤프트 하우징의 내구평가 (Fatigue Analysis of Balance Shaft Housing Considering Non-linear Force Condition)

  • 이동원;김찬중;배철용;권성진;이봉현;김동철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.393-398
    • /
    • 2007
  • Balance shaft has a key role in reducing a engine vibration in a vehicle and widely applied for current models. Since balance shaft module consists many sub-component and each part had its own operational characteristics, some different analysis background should be integrated into one sub-part in balance shaft module and this is the main obstacles in making a design process. Moreover, the balancing shaft rotating in high speed and such condition requires large safety factors in a design process owing to a lot of unexpected problems with the overwhelming rotation. Balance shaft is the core-component generating the intended unbalance as well as canceling the unbalance force or moment by the engine module. So, the balance shaft should meet the high fatigue resistance not to mention of NVH performance. In this paper, a design strategy focused on balance shaft is developed to build a optimal model considering a engine vibration. Putting the unbalance mass distribution as main design parameter, some candidate model is verified with structural and fatigue analysis most appropriate model is proposed here.

  • PDF

Analysis of Kernel Hardness of Korean Wheat Cultivars

  • Hong, Byung-Hee;Park, Chul-Soo
    • 한국작물학회지
    • /
    • 제44권1호
    • /
    • pp.78-85
    • /
    • 1999
  • To investigate kernel hardness, a compression test which is widely used to measure the hardness of individual kernels as a physical testing method was made simultaneously with the measurement of friabilin (15KDa) which is strongly associated with kernel hardness and was recently developed as a biochemical marker for evaluating kernel hardness in 79 Korean wheat varieties and experimental lines. With the scattered diagram based on the principal component analysis from the parameters of the compression test, 79 Korean wheat varieties were classified into three groups based on the principal component analysis. Since conventional methods required large amount of flour samples for analysis of friabilin due to the relatively small amount of friabilin in wheat kernels, those methods had limitations for quality prediction in wheat breeding programs. An extraction of friabilin from the starch of a single kernel through cesium chloride gradient centrifugation was successful in this experiment. Among 79 Korean wheat varieties and experimental lines 50 lines (63.3%) exhibited a friabilin band and 29 lines (36.7%) did not show a friabilin band. In this study, lines that contained high maximum force and the lower ratio of minimum force to maximum force showed the absence of the friabilin band. Identification of friabilin, which is the product of a major gene, could be applied in the screening procedures of kernel hardness. The single kernel analysis system for friabilin was found to be an easy, simple and effective screening method for early generation materials in a wheat breeding program for quality improvement.

  • PDF

군용 수송기 소요 산정 최적화 모형 (An Optimization Model for Determining the Number of Military Cargo-plane)

  • 김희수;이문걸;문호석;황성인
    • 산업경영시스템학회지
    • /
    • 제46권4호
    • /
    • pp.160-172
    • /
    • 2023
  • In contemporary global warfare, the significance and imperative of air transportation have been steadily growing. The Republic of Korea Air Force currently operates only light and medium-sized military cargo planes, but does not have a heavy one. The current air transportation capability is limited to meet various present and future air transport needs due to lack of performance such as payload, range, cruise speed and altitude. The problem of population cliffs and lack of airplane parking space must also be addressed. These problems can be solved through the introduction of heavy cargo planes. Until now, most studies on the need of heavy cargo plane and increasing air transport capability have focused on the necessity. Some of them suggested specific quantity and model but have not provided scientific evidence. In this study, the appropriate ratio of heavy cargo plane suitable for the Korea's national power was calculated using principal component analysis and cluster analysis. In addition, an optimization model was established to maximize air transport capability considering realistic constraints. Finally we analyze the results of optimization model and compare two alternatives for force structure.