• Title/Summary/Keyword: Force component

Search Result 701, Processing Time 0.026 seconds

Disturbance countermeasurement of depth control system using adaptive notch filter (적응노치필터를 이용한 심도제어시스템 외란처리)

  • 김윤호;윤형식;임재환;이석필;박상희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.86-89
    • /
    • 1992
  • One of the most difficult problems in depth control for underwater vehicle is the effect of seaway disturbance. One component of the seaway forces is of large magnitude with a relatively narrow-band, first order component. The other component is generaly of somewhat smaller magnitude, second order component. Since the magnitude of the first order component is generally much greater than the compensating force that can be generating by the planes, it is undesirable for the controller to generate a control command. In this paper, we disigned adaptive notch filtering system using filter bank structure. Energies of each band-passed signal are obtained by MA(Moving Average) method and compared to produce center frequency. By adapting this parameter to notch filter, 1st order seaway disturbance can be removed, which lead to the improvement of automatic depth control system.

  • PDF

Design and Strain Analysis of Precision 3-component Load Cell (정밀 3분력(Fz, Fy, Mz) 로드셀의 설계 및 변형률해석)

  • Kim, Gab-Soon;Rhee, Se-Hun;Um, Ki-Woan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.222-232
    • /
    • 1999
  • This paper describes the development of a precision 3-component load cell with plate beams which may be used for measuring forces Fx, Fy and moment Mz simultaneously in industry. We have derived equations to predict the bending strains on the surface of the beams under forces or moment. We have also determined the attachment location of strain gages of each sensor and fabricated 3-component load cell. To evaluate the rated strain and interference error of each sensor, we have carried out characteristic test of precision 3-component load cell. It reveals that the rated strain calculated from the derived equations are good agreement with the results from Finite Element Method analysis.

  • PDF

Some aspects of the dynamic cross-wind response of tall industrial chimney

  • Gorski, Piotr
    • Wind and Structures
    • /
    • v.12 no.3
    • /
    • pp.259-279
    • /
    • 2009
  • The paper is concerned with the numerical study of the cross-wind response of the 295 m-tall six-flue industrial chimney, located in the power station of Belchatow, Poland. The response of the chimney due to turbulent wind flow is caused by the lateral turbulence component and vortex excitation with taking into account motion-induced wind forces. The cross-wind response has been estimated by means of the random vibration approach. Three power spectral density functions suggested by Kaimal, Tieleman and Solari for the evaluation of the lateral turbulence component response are taken into account. The vortex excitation response has been calculated by means of the Vickery and Basu's model including some complements. Motion-induced wind forces acting on a vibrating chimney have been modeled as a nonlinear aerodynamic damping force. The influence of three components mentioned above on the total cross-wind response of the chimney has been investigated. Moreover, the influence of damping ratios, evaluated by Multi-mode Random Decrement Technique, and number of mode shapes of the chimney have been examined. Computer programmes have been developed to obtain responses of the chimney. The numerical results and their comparison are presented.

A Study on the Precision Hole Machiningof Pre Hardened Mould Steel (프리하든 금형강의 정밀 홀 가공에 관한 연구)

  • Lee, Seung-Chul;Cho, Gyu-Jae;Park, Jong-Nam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.98-104
    • /
    • 2012
  • In this paper, precision processing is carried out for the pre hardened steel(HRC 54), which is one of injection mould materials. Processing characteristics are estimated according to the number of tool cutting blade and roundness is observed by the 3-Dimensional measuring machine. The surface roughness affected by the wire electric discharge machining are measured. Cutting component force of STAVOX is the highest in condition of 2F processing because load per a blade of cutting tool is high. Especially, the difference in Fz is over 20N by cutting load. The slower spindle rotation speed and tool feed rate are, the better cutting component force is. The roundness of hole processed in condition of 4F is good because feed rate is able to be fast. When rotation speed is increased, the surface roughness is decreased. The surface roughness acquired in condition of 2F processing is higher about 50% than 4F processing.

A Study on In-Process Detection of Chatter Vibration in a Turning Process (선삭가공에 있어서 채터진동의 인프로세스 검출에 관한 연구 (I))

  • Koo, Youn-Yoog;Chung, Eui-Sik;Nam, Gung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.3
    • /
    • pp.73-81
    • /
    • 1991
  • There have been many studies on chatter vibration in machining but there seems to be no regulations to decide the commencing point of chatter objectively. The development of an objective method which can estimate and detect chatter commencement is very much in need for automatic manufacturing systems, dynamic performance tests for machine tools, so on. In this study, therefore, the estimation and the in-process detection of chatter have been experi- mentally investigated for the turning process. As a result, the commencing point of chatter can be decided from the behavior of the maximum amplitude of the dynamic component of cutting force, where the maximum amplitude is suddenly increasing with the chatter commencement. Then the commencing point of chatter can be estimated practically by this method before the occurrence of excessive vibration. Also, it is possible to detect the occurence of chatter vibration through the in-process measurement, by monitoring the maximum amplitude of the dynamic component of cutting force.

  • PDF

The Lubrication Effect of Liquid Nitrogen in Cryogenic Machining [I]- Part 1: Cutting Force Component with Physical Evidences - (Liquid Nitrogend의 감찰효과 -물리적 현상에 의한 절삭력-)

  • Jun Seong Chan;Jeong Woo Cheol
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.2
    • /
    • pp.209-221
    • /
    • 2002
  • Machinability improvement by the use of liquid nitrogen in cryogenic machining has been reported in various studies. This has been mostly attributed to the cooling effect of liquid nitrogen. However, No study has been found in discussion on whether liquid nitrogen possesses lubrication effect in cryogenic cutting. In machining tests, cryogenic machining reduced the force component in the feed direction, indicating that the chip slides on the tool rake face with lower friction. This study also found that the effectiveness of LN2 lubrication depends on the approach how LN2 is applied regarding cutting forces related.

Element Design of Balancing Shaft for Reducing the Vibration in Engine Module (엔진진동 저감을 위한 밸런싱샤프트의 요소설계 기법 연구)

  • Lee, Bong-Hyun;Kim, Dong-Chul;Jung, In-Oh;Kim, Chan-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1268-1275
    • /
    • 2005
  • Vibration in Engine module could be reduced by introducing a balance shaft module which has one or more unbalanced rotors. Since the unbalanced rotor is installed in an opposite direction of the free force or unbalance moment by engine component, the unexpected vibration could be decreased kinematically. The essential equation of the unbalanced rotor was Presented for two cases, 3 in-line and 4 in-line cylinder engine type, And the efficiency of the balance shaft is investigated by the vehicle testing that is focused on measuring the reduced vibration level when adapting a balancing module. With the signal processing of measured signals, some important issues on design the balancing shaft could be derived and the overall design process is explained in the final part including the peripheral component, i.e. housing and bush.

On the Nonlinear Hydrodynamic Forces due to Large Amplitude Forced Oscillations (대진폭강제동요시(大振幅强制動搖時)의 비선형유체력(非線型流體力)에 관한 연구(硏究))

  • J.H.,Hwang;Y.J.,Kim;S.Y.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.2
    • /
    • pp.1-13
    • /
    • 1986
  • The nonlinear hydrodynamic forces acting on a two-dimensional circular cylinder, oscillating with large amplitude in the free surface, are calculated by using the Semi-Lagrangian Time-Step-ping Method used by O.M. Faltinsen. In present calculation the position and the potential value of free surface are calculated using the exact kinematic and dynamic free surface boundary condition. At each time step an integral equation is solved to obtain the value of potential and normal velocity along the boundaries, consisting of both the body surface and the free surface. Some effort was devoted to the elimination of instability arising in the range of high frequency. Numerical simulations were performed up to the 3rd or 4th period which seems to be enough for the transient effect to die out. Each harmonic component and time-mean force are obtained by the Fourier transform of forces in time domain. The results are compared with others' experimental and theoretical results. Particularly, the calculation shows the tendency that the acceleration-phase 1st-harmonic component(added mass) increases as the motion amplitude increases and a reverse tendency in the velocity-phase 1st-harmonic component(damping coefficient). The Yamashita's experimental result also shows the same tendency. In general, the present result show relatively good agreement with the Yamashita's experimental result except for the time-mean force.

  • PDF

Uncertainty Evaluation of a Multi-axis Force/Moment Sensor and Its Application (다축 힘/모멘트센서의 불확도평가 및 응용에 관한 연구)

  • 김갑순
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.177-180
    • /
    • 2001
  • This paper describes the calibration method and the evaluation method of relative expanded uncertainty for a multi-axis force/moment sensor. This sensor should be calibrated to be use in the industry. Now, the confidence of the calibration result is expressed with interference error. But it is no inaccurate, because an interference error, besides, a reproducibility error of the sensor, a error of this six-axis force/moment sensor calibrator, and so on. Thus, in order to accurately evaluate the relative expanded uncertainty of it, the concept of the uncertainty should be induced, and these errors must be contained in the relative expanded uncertainty. In this paper, the calibration method is exhibited and the evaluation method of the relative expanded uncertainty is also exhibited. And, a six-axis force/moment sensor was calibrated and the relative expanded uncertainty was evaluated.

  • PDF

Characteristics of axial vibration of marine diesel engine crankshafts (박용디이젤기관의 크랭크축계 종진동특성에 관한 연구)

  • 전효중;왕지석;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.22-28
    • /
    • 1983
  • In former papers which were published already, authors had derived calculation formulae for the axial stiffness and the radial force conversion factor of crankshaft. In this paper, crankthrow axial stiffness and radial force conversion factors of actual engines are calculated by these theoretical formulae and then their characteristics are investigated. As the results, the axial stiffness and the radial force conversion factor of the latest super-long stroke engine are smaller than those of old-type engines. The influence of the former brings down the resonance speed of engine and the latter reduces the exciting force of axial vibration, but as the harmonic component of axial vibration force becomes rather strong, its effect of reducing is considerably canceled. In conclusion, as the latest super-long stroke engine is seemed to be liable to axial vibration of crankshafat, it is recommend that, in the design stage of propulsion shaft, its axial vibration condition must be more carefully checked.

  • PDF