• Title/Summary/Keyword: Force component

Search Result 703, Processing Time 0.03 seconds

Effects of oscillation parameters on aerodynamic behavior of a rectangular 5:1 cylinder near resonance frequency

  • Pengcheng Zou;Shuyang Cao;Jinxin Cao
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.59-74
    • /
    • 2024
  • Large Eddy Simulation (LES) is used to explore the influence of vibration frequency and amplitude on the aerodynamic performance of a rectangular cylinder with an aspect ratio of B/D=5 (B: breadth; D: depth of cylinder) at a Reynolds number of 22,000 near resonance frequency. In smooth flow conditions, the research employs a sequence of three-dimensional simulations under forced vibration with diverse frequency ratios fe / fo = 0.8-1.2 (fe : oscillation frequency; fo : Strouhal frequency when the rectangular cylinder is stationary ) and oscillation amplitudes Ah/D = 0.05 - 0.3. The individual influences of fe / fo and Ah/D on the characteristics of integrated and distributed aerodynamic forces are the focal points of discussion. For the integrated aerodynamic force, particular emphasis is placed on the analysis of the dependence of velocity-proportional component C1 and displacement-proportional component C2 of unsteady aerodynamic force on amplitude and frequency ratio. Near the resonance frequency, the dependencies of C1 and C2 on amplitude are stronger than that of frequency ratio. For the distributed aerodynamic force, the increase in frequency and amplitude promotes the position of the main vortex core and reattachment to the leading edge in the streamwise direction. In the spanwise direction, vibration enhances the spanwise correlation of aerodynamic force to weaken the three-dimensional effect of the flow field, and a lower frequency ratio and larger amplitude amplify this effect.

A Study on the Low Force Estimation of Skeletal Muscle by using ICA and Neuro-transmission Model (독립성분 분석과 신전달 모델을 이용한 근육의 미세한 힘의 추정에 관한 연구)

  • Yoo, Sae-Keun;Youm, Doo-Ho;Lee, Ho-Yong;Kim, Sung-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.632-640
    • /
    • 2007
  • The low force estimation method of skeletal muscle was proposed by using ICA(independent component analysis) and neuro-transmission model. An EMG decomposition is the procedure by which the signal is classified into its constituent MUAP(motor unit action potential). The force index of electromyography was due to the generation of MUAP. To estimate low force, current analysis technique, such as RMS(root mean square) and MAV(mean absolute value), have not been shown to provide direct measures of the number and timing of motoneurons firing or their firing frequencies, but are used due to lack of other options. In this paper, the method based on ICA and chemical signal transmission mechanism from neuron to muscle was proposed. The force generation model consists of two linear, first-order low pass filters separated by a static non-linearity. The model takes a modulated IPI(inter pulse interval) as input and produces isometric force as output. Both the step and random train were applied to the neuro-transmission model. As a results, the ICA has shown remarkable enhancement by finding a hidden MAUP from the original superimposed EMG signal and estimating accurate IPI. And the proposed estimation technique shows good agreements with the low force measured comparing with RMS and MAV method to the input patterns.

Development of 3-Component tool Dynamometer for Evaluation of Machinability in High Speed Machining (고속가공에서 가공성 평가를 위한 3축 공구동력계 개발)

  • Kang, Myeong-Chang;Kim, Jeong-Suk;Lee, Deuk-Woo;Lee, Ki-Yong;Kim, Jeong-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.11-18
    • /
    • 1999
  • Recently high speed machining is being studied actively to reduce machining time and to improve machining precision. To perform efficient high speed machining, evaluation of high speed machinability must be studied preferentially and it can be identified by investigation of cutting force. To measure cutting forces in high speed machining, dynamometer which has high natural frequency was newly designed using 3-axes piezo force sensor. For newly designed dynamometer, calibration is conducted with sensitivity of force sensor modulated and proper preload and interference force are investigated experimently. Also, cutting force signals of newly designed dynamometer are compared with those of conventional one in high speed cutting experiment and its superiority is confirmed. Then using newly designed dynamometer, high speed machinability is evaluated about cutting force and tool wear in various cutting conditions.

  • PDF

A Study on the Characteristics of Wave Forces on Artificial Reefs (착저식 인공어초에 작용하는 파력특성에 관한 연구)

  • RYU Cheong-Ro;KIM Hyeon-Ju
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.5
    • /
    • pp.605-612
    • /
    • 1994
  • The methods to determine the hydrodynamic coefficients for the fixed type artificial reefs which were constructed to control ecological system in coastal waters are compared and discussed by model test results. To calculate the wave forces, least square method show good agreement with the experimental results and more stability than maximum force component method or Fourier decomposition method. This modified least square method of weighting the square of measured force turned out to be the most feasible method for maximum force. Using the feasible method, hydrodynamic characteristics for artificial reefs on uniform slopes offshore and breaking zone were studied. They were properly related to Keulegan-Carpenter's number and found larger than previous results. Wave force coefficients for artificial reefs around breaking zone were distributed from 1.5 to 2.5, and the mean value was 2.0. Drag force components were more in evidence than inertia force in maximum force which is important parameter to evaluate stability for high-permeability structures. A formula for the calculation of the maximum force for artificial reefs design is proposed, using structural dimension, water particle velocity and Keulegan-Carpenter's number.

  • PDF

Damage Effects on the Ultimate Strength of Offshore Tubular Members (해양구조물 원통부재의 최종강도에 대한 손상의 영향)

  • Paik, Jeom-Ki;Shin, Byung-Cheon
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.577-577
    • /
    • 1989
  • In this paper, a detail evaluation of ultimate strength of offshore unstiffened tubular members with bending and local denting damage which are subjected to combined axial force and bending moment and to component load is presented through theoretical and experimental approaches. Based upon the results obtained here, the damage effect on the ultimate strength of tubular member under combined loads and component load is investigated.

Damage Effects on the Ultimate Strength of Offshore Tubular Members (해양구조물 원통부재의 최종강도에 대한 손상의 영향)

  • Paik, Jeom-Ki;Shin, Byung-Cheon
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.77-86
    • /
    • 1989
  • In this paper, a detail evaluation of ultimate strength of offshore unstiffened tubular members with bending and local denting damage which are subjected to combined axial force and bending moment and to component load is presented through theoretical and experimental approaches. Based upon the results obtained here, the damage effect on the ultimate strength of tubular member under combined loads and component load is investigated.

  • PDF

Design of an Automatic Placement System for PCBs (PCB 자동 배치 시스템의 설계)

  • 장명수;이장순;황선영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.2
    • /
    • pp.104-115
    • /
    • 1994
  • This paper presents the design of a placement sysyem integrated in PCB design system. to get an optimal component positioning from part and net list. Unplaced components are placed in initial process using modified cluster development algorithm and are swapped in improvement process using the GFDR(Generalized Force Directed Relaxation) algorithm. The result is optimized in post process by component rotating or pin/gate swapping. Experimental results shwo that the placement system produces manufacturable layouts which are optimal in terms of total routing length.

  • PDF

Design and Strain Analysis of Precision 3-component Load Cell

  • Kim, Gab-Soon;Rhee, Se-Hun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.22-32
    • /
    • 2000
  • This paper describes the development of a precision 3-component load cell with plate beams which may be used for measuring forces Fx, Fy and moment Mz simultaneously in industry. The equations to predict the bending strains on the surface of the beams under forces or moment are derived, the attachment location of strain gages of each sensor is determined, and 3-component load cell is carried out. It reveals that the rated strain calculated from the derived equations are good agreement with the results from Finite Element Method analysis.

  • PDF

Information of Cutting Force in Drilling and Its Application (드릴가공시 절삭저항이 갖는 정보와 그 응용에 관한 연구)

  • Jeon, Eon-Chan;Lee, Dong-Ju;Nam, Gung-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.4
    • /
    • pp.39-47
    • /
    • 1988
  • There are many methods in measuring the signal of cutting, but by measuring the multi-signal, we can pick up the wear and chipping of the tool more accurately. Hence, the present study is concerned with analysing the dynamic component as well as the static component measured by the tool dynamometer, finding out which signal is involved in each component, comparing the capability of the cemented carbide drill and the HSS drill, and discussing the chipping of the cemented carbide drill. In addition, discussion is made about the characteristics of the frequency of the torque and thrust in connection with the dynamic component.

  • PDF

Bearingless Rotor Hub Composite Component Fatigue Analysis of Utility Helicopter to perform the Basic Mission (기본임무를 수행하는 기동헬기에 적용될 무베어링 허브 복합재 구성품 피로수명 해석)

  • Kim, Taejoo;Kee, Youngjoong;Kim, Deog-kwan;Kim, Seung-ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.383-389
    • /
    • 2013
  • Rotor system is a very important part which produces lift, thrust and control force in helicopter. Component of rotor system must endure various flight load for the required life. In helicopter rotor system, bearingless rotor system is the highest technology rotor system compare with articulated and hingeless rotor system. Baaringless rotor system is not include mechanical flap hinge, lag hinge and pitch bearing. Bearingless rotor component flexbeam which made by composite material has conduct hinge and bearing role instead of mechanical flap hinge, lag hinge and pitch bearing. These characteristics has less part number and lass weight than others. In this paper, conduct safe life analysis of bearingless composite component flexbeam and torque tube applying to utility helicopter load condition.

  • PDF