• Title/Summary/Keyword: Force and moment

Search Result 1,589, Processing Time 0.026 seconds

Wheel Load Distribution Factor for Girder Moment and Shear Force of Skew Plate Girder Bridges (판형사교 거더의 휨모멘트와 전단력에 대한 하중분배계수)

  • Seo, Chang-Bum;Song, Jae-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.1 s.16
    • /
    • pp.33-43
    • /
    • 2005
  • The girder wheel load distribution factors stated in the Korean Bridge Specification and AASHTO Standard Specifications do not account for the effect of skewness of plate girders, and very little research has been conducted on girder wheel load distribution factors. The purpose of the study is to propose load distribution factor formulas for skew plate girder bridges which comprise various parameters through structural analysis. To confirm the validity of finite element models used in this study analytic values are compared with the field test results. From the results it should be noted that span length is not such a dominant parameter compared with others. In view of better load distribution of interior girders, skew arranged cross beams or bracing are preferable, furthemore bracing system is more effective than cross beam system. By means of regression analysis on the basis of analytic results wheel load distribution factor formulas are proposed and compared with current codes.

Experimental Research on Structural Behaviour of the Wing Wall Attached Columns (날개벽이 붙는 기둥의 구조적 거동에 관한 실험적 연구)

  • Kang, Young-Ung;Yang, Won-Gik;Kang, Dae-Eon;Song, Dong-Yup;Yi, Waon-Ho;Tae, Kyung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.29-32
    • /
    • 2008
  • A lot of structures built since 1988 do not have efficient seismic design. Current buildings have complex shaped walls where the wing wall system is a popular option. When the wing wall is attached to a column, or a short span is produced due to the wing wall system, the system affects the behaviour of the column such as by increasing the strength and decreasing the ductility of the members. These members affect the structural behaviour of the columns and destruction aspect as the investigation on the damage of the previous earthquakes indicates. To prevent such case, current design installs structural silt on the wing wall to consider the columns and insulating so that it does not affect the internal forces. Calculations for internal shear force and internal bending moment of the vertical members are considered an important matter in design, but currently Korea does not have any studies on the effects of the wing wall on the columns.

  • PDF

A Study on Potential of Engineered Wood for 9-story Office Buildings (공학목재의 9층 사무소 건물 적용 가능성 연구)

  • Chu, Yurim;Kim, Taewan;Kim, Seung-Rae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.163-170
    • /
    • 2017
  • The need for eco-friendly building materials such as engineered wood has increased to reduce carbon emissions. Although the range and height of engineered wood buildings are gradually increasing in North America and Europe, engineered wood is mainly used for low-rise residential buildings in Korea. In order to reduce carbon emissions more, therefore, it needs to expand the use of engineered wood by applying it to various buildings with different uses or more stories. With this background, the aim of this study is to investigate the applicability of engineered wood for 9-story office buildings. Since a 9-story building with engineered wood only is not allowed in KBC, an example building has RC ordinary shear walls as the lateral force resisting system while engineered wood is only used for gravity load resisting moment frames. Another example building is also used for comparison where both lateral and gravity load resisting systems are designed by RC. The applicability of engineered wood is investigated by comparing the seismic performance and the amount of carbon emission of both buildings. The result shows that the seismic performance of both buildings was not significantly different while the amount of carbon emission of the engineered wood building was much less then the RC building. Based on this result, engineered wood is sufficiently applicable to 9-story office buildings even though it still needs to pay attention to the shear design of reinforce concrete walls.

A Theoretical Study on the Characteristics of Fire Resistance for the Concrete Filled Tubular Steel Columns (콘크리트충전 강관기둥의 내화특성에 관한 이론적 연구)

  • Chung, Kyung Soo;Choi, Sung Mo;Kim, Dong Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.649-658
    • /
    • 1997
  • When steel tube as a column is filled with concrete, it is common that the load-bearing capacities of CFST(Concrete Filled Steel Tube) column are increased substantially, And the CFST column can obtain a capacity of fire resistance without any additional detail on the surface of the steel tube for fire protection. In order to clarify the behavior of CFST column during fire occurrence, a theoretical study is performed, that is, a thermal analysis is used to find temperature gradient dependent on the time on the steel tube and the infilled concrete. N-M (axial force-moment) interaction curves are summarized under the consideration for time dependent variation. The material properties of concrete and steel in accordance with a temperature variation are referred to the existing general data. Thermal transient analyses are performed by finite element method through ANSYS and then these results are verified by comparing with the existing test results. On the basis of analytical results, load-carrying capacities (N-M interaction curves) are calculated by numerical analysis method.

  • PDF

Inelastic Nonlinear Analysis of Plane Truss Structures Using Arc-Length Method (호장법을 이용한 평면 트러스 구조의 비탄성 비선형 해석)

  • Kim, Kwang-Joong;Baek, Ki-Youl;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.1
    • /
    • pp.41-48
    • /
    • 2008
  • Spatial structure is an appropriate shape that resists external force only with in-plane forte by reducing the influence of bending moment, and it maximizes the effectiveness of structure system. the spatial structure should be analyzed by nonlinear analysis regardless static and dynamic analysis because it accompanys large deflection for member. To analyze the spatial structure geometrical and material nonlinearity should be considered in the analysis. In this paper, a geometrically nonlinear finite element model for plane truss structures is developed, and material nonlinearity is also included in the analysis. Arc-length method is used to solve the nonlinear finite element model. It is found that the present analysis predicts accurate nonlinear behavior of plane truss.

  • PDF

Flexural Behavior of Reinforced Concrete Columns Using Electric Arc Furnace Oxidizing Slag Aggregates (전기로 산화슬래그 골재를 사용한 철근콘크리트 기둥의 휨 거동)

  • Jung, You-Jin;Lee, Young-Hyun;Kim, Sang-Woo;Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.267-273
    • /
    • 2012
  • This study is performed to evaluate the flexural performance of reinforced concrete columns with electric arc furnace oxidizing slag aggregates. Electric arc furnace slag is a by-product obtained from the process of refining scrap steel. The electric arc furnace slag can be used as a concrete aggregate, because it mainly consists of CaO and $SiO_2$, similar to natural rocks and minerals. Three rectangular columns with various types of aggregate were cast to test in flexure. All of the test specimens had a cross-section of $250{\times}250$mm and a height of 1,500 mm in test region. The specimens were designed to apply reversed cyclic antisymmetric moment and constant axial force. The experimental results showed that the specimens with electronic arc furnace oxidizing slag aggregates had superior flexural performance than the specimen with natural aggregates.

Seismic Fragility Analysis of a Cable-stayed Bridge with Energy Dissipation Devices (에너지 소산장치를 장착한 사장교의 지진 취약도 해석)

  • Park, Won-Suk;Kim, Dong-Seok;Choi, Hyun-Sok;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.1-11
    • /
    • 2006
  • This paper presents a seismic fragility analysis method for a cable-stayed bridge with energy dissipation devices. Model uncertainties represented by random variables include input ground motions, characteristics of energy dissipation devices and the stiffness of cable-stayed bridge. Using linear regression, we established demand models for the fragility analysis from the relationship between maximum responses and the intensity of input ground motions. For capacity models, we considered the moment and shear force of the main tower, longitudinal displacement of the girder, deviation of the stay cables tension and the local buckling of the main steel tower as the limit states for cable-stayed bridge. As a numerical example, fragility analysis results for the 2nd Jindo bridge are presented. The effect of energy dissipation devices is also briefly discussed.

The Analysis of the Effect of .Wind Load on the Structural Stability of an Articulation type Container Crane (풍하중이 관절형 붐을 가진 컨테이너 크레인의 구조 안정성에 미치는 영향 분석)

  • Lee Jung-Myung;Lee Seong-Wook;Han Dong-Seop;Han Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.235-240
    • /
    • 2005
  • Articulation type container cranes are the boom forms an inverted L shape when raise. The inner boom section is nearly vertical when raise and the outer boom section is nearly horizontal. Articulation type container cranes were developed as a lower height crane to meet aircraft clearance requirements. Because the height of an Articulation type container crane is about 70m, the crane is subjected to the effect of Wind load. Therefore, the problem on the effect of Wind load is receiving carefully study. The researches for the effect of wind load on the structural stability of a conventional container crane are conducted. In this study, we carried out the investigation for an articulation type container crane. When a wind load is applied to a container crane, we analyzed the reaction force distribution at each supporting point of a crane with respect to a wind load direction and the effect of the change of the machinery house location on the structural stability rf a crane by carrying out Finite Element Analysis.

  • PDF

Design Comparison by Node Width Variation of Strut-Tie-Model (스트럿-타이 모델의 절점 폭 변화에 따른 설계 비교)

  • Uy, Lymei;Son, Byung-Jik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.6329-6335
    • /
    • 2014
  • In the Strut-Tie-Model(STM), the width of a node is important in both analysis and design. Its effects on the force distribution at truss analogy system. In addition, it effects the verification of all struts and nodes, which need to be checked to satisfy the code of design. Code here refers to the ACI-318 code. Four methods were used to define the width of node: 1) effective depth is assumed to equal to 0.9 of the overall depth of beam, 2) moment equilibrium 3) assumption of the width of node at the bottom equal to 380mm, and 4) the new proposed method by this study. 106 selected samples of a parametric study obtained from the four methods were analyzed. Because total steel requirement from these four methods are similar, the easiest would be a good choice for a time saving calculation.

Verification of Effective Support Points of Stern Tube Bearing Using Nonlinear Elastic Multi-Support Bearing Elements (비선형 탄성 다점지지 베어링 요소를 이용한 선미관 베어링의 유효지지점 검증)

  • Choung, Joon-Mo;Choe, Ick-Heung;Kim, Kyu-Chang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.479-486
    • /
    • 2005
  • The final goal of shift alignment design is that the bearing reaction forces or mean pressures are within design boundaries for various service conditions of a ship. However, it is found that calculated bearing load can be substantially variable according to the locations of the effective support points of after sterntube bearing which are determined by simple calculation or assumption suggested by classification societies. A new analysis method for shaft alignment calculation is introduced in order to resolve these problems. Key concept of the new method is featured by adopting both nonlinear elastic and multi-support elements to simulate a bearing support Hertz contact theory is basically applied for nonlinear elastic stiffness calculation instead of the projected area method suggested by most of classification societies. Three loading conditions according to the bearing offset and the hydrodynamic moment and twelve models according to the locations of the effective support points of sterntube bearings are prepared to carry out quantitative verifications for an actual shafting system of 8000 TEU class container vessel. It is found that there is relatively large difference between assumed and calculated effective support points.