• Title/Summary/Keyword: Force Multiplier

Search Result 31, Processing Time 0.024 seconds

Semi-active friction dampers for seismic control of structures

  • Kori, Jagadish G.;Jangid, R.S.
    • Smart Structures and Systems
    • /
    • v.4 no.4
    • /
    • pp.493-515
    • /
    • 2008
  • Semi-active control systems have attracted a great deal of attention in recent years because these systems can operate on battery power alone, proving advantageous during seismic events when the main power source of the structure may likely fail. The behavior of semi-active devices is often highly non-linear and requires suitable and efficient control algorithm. This paper presents the comparative study and performance of variable semi-active friction dampers by using recently proposed predictive control law with direct output feedback. In this control law, the variable slip force of semi-active variable friction damper is kept slightly lower than the critical friction force, which allows the damper to remain in the slip state during an earthquake, resulting in improved energy dissipation capability. This control algorithm is able to produce a continuous and smooth slip forces for a variable friction damper. The numerical examples include a structure controlled with multiple variable semi-active friction dampers and with multiple passive friction dampers. A parameter, gain multiplier defined as the ratio of damper force to critical damper control force, is investigated under four different real earthquake ground motions, which plays an important role in the present control algorithm of the damper. The numerically evaluated optimum parametric value is considered for the analysis of the structure with dampers. The numerical results of the variable friction dampers show better performance over the passive dampers in reducing the seismic response of structures.

Single-Chip Controller Design for Piezoelectric Actuators using FPGA (FPGA를 이용한 압전소자 작동기용 단일칩 제어기 설계)

  • Yoon, Min-Ho;Park, Jungkeun;Kang, Taesam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.513-518
    • /
    • 2016
  • The piezoelectric actuating device is known for its large power density and simple structure. It can generate a larger force than a conventional actuator and has also wide bandwidth with fast response in a compact size. To control the piezoelectric actuator, we need an analog signal conditioning circuit as well as digital microcontrollers. Conventional microcontrollers are not equipped with an analog part and need digital-to-analog converters, which makes the system bulky compared with the small size of piezoelectric devices. To overcome these weaknesses, we are developing a single-chip controller that can handle analog and digital signals simultaneously using mixed-signal FPGA technology. This gives more flexibility than traditional fixed-function microcontrollers, and the control speed can be increased greatly due to the parallel processing characteristics of the FPGA. In this paper, we developed a floating-point multiplier, PWM generator, 80-kHz power control loop, and 1-kHz position feedback control loop using a single mixed-signal FPGA. It takes only 50 ns for single floating-point multiplication. The PWM generator gives two outputs to control the charging and discharging of the high-voltage output capacitor. Through experimentation and simulation, it is demonstrated that the designed control loops work properly in a real environment.

Development and Application of an Explosion Modeling Technique Using PFC (PFC3D에서의 폭원모델링 기법의 개발 및 적용)

  • Choi Byung-Hee;Yang Hyung-Sik;Ryu Chang-Ha
    • Explosives and Blasting
    • /
    • v.22 no.4
    • /
    • pp.7-15
    • /
    • 2004
  • An explosion modeling technique was developed by using the spherical discrete element code, PFC3D, which can be used to model the dynamic stress wave propagation phenomenon. The modeling technique is simply based on an idea that the explosion pressure should be applied to a PFC3D particle assembly not in the form of an external force (body force), but in the form of a contact force (surface force). According to this concept, the explosion pressure is applied to the wall particles by the scheme of radius expansion/contraction of inner-hole particles. The output wall force is compared to the input hole pressure in every time step, and a correction routine is activated to control the radius multiplier of the inner-hole particles. A comparative blast simulation far a cement mortar block of $80\times90\times80mm$ was conducted by using the conventional explosion modeling method and the new one. The results of the simulation are presented in a qualitative fashion.

Experimental Study about Two-phase Damping Ratio on a Tube Bundle Subjected to Homogeneous Two-phase Flow (균질 2상 유동에 놓인 관군에 작용하는 감쇠비에 대한 실험적 연구)

  • Sim, Woo Gun;Dagdan, Banzragch
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.3
    • /
    • pp.171-181
    • /
    • 2017
  • Two-phase cross flow exists in many shell-and-tube heat exchangers such as condensers, evaporators, and nuclear steam generators. The drag force acting on a tube bundle subjected to air/water flow is evaluated experimentally. The cylinders subjected to two-phase flow are arranged in a normal square array. The ratio of pitch to diameter is 1.35, and the diameter of the cylinder is 18 mm. The drag force along the flow direction on the tube bundles is measured to calculate the drag coefficient and the two-phase damping ratio. The two-phase damping ratios, given by the analytical model for a homogeneous two-phase flow, are compared with experimental results. The correlation factor between the frictional pressure drop and the hydraulic drag coefficient is determined from the experimental results. The factor is used to calculate the drag force analytically. It is found that with an increase in the mass flux, the drag force, and the drag coefficients are close to the results given by the homogeneous model. The result shows that the damping ratio can be calculated using the homogeneous model for bubbly flow of sufficiently large mass flux.

A multiple level set method for modeling grain boundary evolution of polycrystalline materials

  • Zhang, Xinwei;Chen, Jiun-Shyan;Osher, Stanley
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.191-209
    • /
    • 2008
  • In this paper, we model grain boundary evolution based on a multiple level set method. Grain boundary migration under a curvature-induced driving force is considered and the level set method is employed to deal with the resulting topological changes of grain structures. The complexity of using a level set method for modeling grain structure evolution is due to its N-phase nature and the associated geometry compatibility constraint. We employ a multiple level set method with a predictor-multicorrectors approach to reduce the gaps in the triple junctions down to the grid resolution level. A ghost cell approach for imposing periodic boundary conditions is introduced without solving a constrained problem with a Lagrange multiplier method or a penalty method. Numerical results for both uniform and random grain structures evolution are presented and the results are compared with the solutions based on a front tracking approach (Chen and Kotta et al. 2004b).

Plastic Design Method for Steel Skeletal Structure based on the Least Norm Stress Field (최소노름 응력장를 이용한 구조물의 소성해석법)

  • Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.131-137
    • /
    • 2006
  • This study presents a new stress analysis method to be substituted for the elastic analysis in such a plastic design procedure. This method is accompanied by an efficient mathematical tool which can be easily handled by personal computer. The method also easily accepts arbitrary strategies by the designer for selection member size.

  • PDF

Development of a Multibody Dynamics Analysis System Using the Object-Oriented Data Model (객체지향 데이터 모델을 이용한 다물체 동역학 해석 시스템 개발)

  • 박태원;송현석;서종휘;한형석;이재경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1487-1490
    • /
    • 2003
  • In this paper, the application of object-oriented Data Model to develop a multibody dynamic system, called O-DYN, is introduced. Mechanical components, such as bodies, joints, forces are modeled as objects which have data and method by using object-oriented modeling methodology. O-DYN, a dynamic analysis system, based on the object-oriented modeling concept is made in C++. One example is analyzed through the O-DYN, It is expected that the analysis program or individual module constructed in this paper would be useful for mechanical engineers in predicting the dynamic responses of multibody systems and developing an analysis program

  • PDF

DEVELOPMENT OF A NUMERICAL TECHNIQUE FOR CAPILLARY SPREADING OF A DROPLET CONTAINING PARTICLES ON THE SOLID SUBSTRATE (미세입자분산 액적의 고체면에서 모세퍼짐 현상에 관한 직접수치해석 기법개발)

  • Hwang, Wook-Ryol;Jeong, Hyun-Jun;Kim, See-Jo;Kim, Chong-Youp
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.14-19
    • /
    • 2007
  • We present a direct numerical simulation technique and some preliminary results of the capillary spreading of a droplet containing particles on the solid substrate. We used the level-set method with the continuous surface stress for description of droplet spreading with interfacial tension and employed the discontinuous Galerkin method for the stabilization of the interface advection equation. The distributed Lagrangian-multipliers method has been combined for the implicit treatment of rigid particles. We investigated the droplet spreading by the capillary force and discussed effects of the presence of particles on the spreading behavior. It has been observed that a particulate drop spreads less than the pure liquid drop. The amount of spread of a particulate drop has been found smaller than that of the liquid with effectively the same viscosity as the particulate drop.

MOT Program in Korea : Current and Recommendations (우리나라의 기술경영 프로그램 :현황과 과제)

  • ;Alden S. Bean
    • Journal of Technology Innovation
    • /
    • v.7 no.2
    • /
    • pp.37-56
    • /
    • 1999
  • Technology has always been the force multiplier that influenced production and effected increase in the standard of living. The difficult choices involved in developing and implementing new technologies are recognized, but the right choice is rarely well defined and progress is often subject trial and error. The process of managing technologies to create wealth is called MOT. MOT is proposed as the central link for knowledge drawn from engineering, business, science, and corporate practice. One academic response to global competition is the creation of graduate program in MOT that have different academic and experience requirements. The purposes of this paper can be divided into two categories: how about the realities of MOT programs in Korea and what is the recommendation for universities to introduce this program.

  • PDF

A Study on the Buckling Strength of Stern Skeg Shell Plate (선미 스케그 외판의 좌굴강도에 관한 연구)

  • Choi, Kyung-Shin;Seol, Sang-Seok;Kim, Jin-Woo;Kong, Seok-Hwan;Chung, Won-Jee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.80-87
    • /
    • 2021
  • Most container ships are currently being constructed as Ultra-Large Container Ships. Hence, the equipment of the ships is also becoming relatively large. In particular, propellers, rudders, and rudder stocks are large in the stern structure, and in relation, efficient design of the hull structures to safely secure these parts is important. The bottom shell plate surface of a stern skeg is a perforated plate from which the rudder stock penetrates, so it is an important component for the stern structure. In this paper, to determine the critical buckling of the shell plate, an interaction curve equation for the two-axis compression of the shell plate was derived using the maximum value of the static structural stress multiplier in a load multiplier mode. This equation predicts the timing of the buckling occurrence. By analyzing this interaction curve equation, the buckling behavior of the plates subjected to a combination load was determined and the usefulness of applying it to ship building was investigated.