• Title/Summary/Keyword: Force Measuring Device

Search Result 115, Processing Time 0.03 seconds

Development of Finger-force Measuring System with Six-axis Force/moment Sensor for Measuring a Spherical-object Grasping Force (6 축 힘/모멘트센서를 이용한 구물체 잡기 손가락 힘측정장치 개발)

  • Kim, Hyeon-Min;Yoon, Joung-Won;Shin, Hee-Suk;Kim, Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.11
    • /
    • pp.37-45
    • /
    • 2010
  • Stroke patients can't use their hands because of the paralysis of their fingers. Their fingers are recovered by rehabilitating training, and the rehabilitating extent can be judged by grasping a spherical object. At present, the used object in hospital is only a spherical object, and can't measure the force of fingers. Therefore, doctors judge the rehabilitating extent by touching and watching at their fingers. So, the spherical object measuring system which can measure the force of their fingers should be developed. In this paper, the finger-force measuring system with a six-axis force/moment sensor which can measure the spherical-object grasping force is developed. The six-axis force/moment sensor was designed and fabricated, and the force measuring device was designed and manufactured using DSP (digital signal processing). Also, the grasping force test of men was performed using the developed finger-force measuring system, it was confirmed that the average force of men was about 120N.

Development of finger-force measuring system with three-axis force sensor for measuring a spherical-object grasping force (3축 힘센서를 이용한 구물체 잡기 손가락 힘측정시스템 개발)

  • Kim, Hyeon-Min;Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.238-245
    • /
    • 2010
  • Stroke patients can't use their hands because of the paralysis of their fingers. Their fingers are recovered by rehabilitating training, and the rehabilitating extent can be judged by grasping a spherical object. At present, the object used in hospital is only a spherical object, and can't measure the force of fingers. Therefore, doctors judge the rehabilitating extent by touching and watching at their fingers. So, the spherical object measuring system which can measure the force of their fingers should be developed. In this paper, the finger-force measuring system with a three-axis force sensor which can measure the spherical-object grasping force is developed. The three-axis force sensor is designed and fabricated, and the force measuring device is designed and manufactured using DSP(digital signal processing). Also, the grasping force test of men is performed using the developed finger-force measuring system, it was confirmed that the average force of men was about 120 N.

Development of an Equilibrium Sensation Measuring System for Human Being (사람의 평형감각 측정시스템 개발)

  • Kim, Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.62-69
    • /
    • 2009
  • This paper describes the development of the new type equilibrium sensation measuring system for human with handicap in the equilibrium sensation. The medium and small hospital could not use the developed equilibrium sensation measuring system, because it is very high prices. Therefore, the new type system should be developed to measure the numerical value of the equilibrium sensation in human with handicap. In this paper, First, two 3-axis force/moment sensors which can measure force Fz, moments Mx and My simultaneous were designed and manufactured, second, the high speed measuring device which can acquire the output from two 3-axis force/moment sensors, third, the new type equilibrium sensation measuring system was developed, then the characteristic test of the developed equilibrium sensation measuring system carried out, it is confirmed that the system could measure the swing body of human with handicap.

Development of Two-Finger Force Measuring System to Measure Two-Finger Gripping Force and Its Characteristic Evaluation (단축 힘센서를 이용한 두 손가락 잡기 힘측정장치 개발 및 특성평가)

  • Kim, Hyeon-Min;Shin, Hi-Suk;Yoon, Joung-Won;Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.172-177
    • /
    • 2011
  • Finger patients can't use their hands because of the paralysis their fingers. Their fingers are recovered by rehabilitating training, and the rehabilitating extent can be judged by measuring the pressing force to be contacted with two fingers(thumb and first finger, thumb and middle finger, thumb and ring finger, thumb and little finger). At present, most hospitals have used a thin plastic-plate for measuring the two-finger grasping force, and we can only judge that they can grasp the plate with their two-finger through it, because the plate can't measure the two-finger grasping force. But, recently, the force measuring system for measuring two-finger grasping force was developed using three-axis force sensor, but it is very expensive, because it has a three-axis force sensor. In this paper, two-finger force measuring system with a one-axis force sensor which can measure two-finger grasping force was developed. The one-axis force sensor was designed and fabricated, and the force measuring device was designed and manufactured using DSP(Digital Signal Processing). Also, the grasping force test of men was performed using the developed two-finger force measuring system, it was confirmed that the grasping forces of men were different according to grasping methods, and the system can be used for measuring two-finger grasping force.

Development of four-finger force measuring system of a cylindrical type (원통형 4손가락 힘측정시스템 개발)

  • Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.349-355
    • /
    • 2010
  • Stroke patients, etc. can't use their hands because of the paralysis of their fingers, and their fingers could be recovered by rehabilitating training. In order to judge the rehabilitating extent of their fingers, the patients should grasp a cylindrical object in hospital. At present, the used object in hospital is only a cylindrical object, and can't measure the force of fingers. Therefore, doctors judge the rehabilitating extent by touching and watching at their fingers. So, the four-finger force measuring system which can measure the force of their fingers should be developed. In this paper, four-finger force measuring system with four force sensors which can measure the grasping force is developed. The force sensors are designed and fabricated, and the force measuring device is designed and manufactured by using DSP(digital signal processing). Also, the grasping force test of men is performed by using the developed four-finger force measuring system. It was confirmed that the finger average force of right hand is about 214.6 N and that of left hand is about 212.8 N.

Development of the Effective Clamping Force Measuring System for Spring Clamp (자동차용 스프링클램프 조임력 자동측정시스템의 개발)

  • O, Gi-Seok;Jo, Myeong-U;Seo, Tae-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.95-101
    • /
    • 2000
  • The purpose of this study is to develop an improved measuring system, which allows for effectively measure spring clamping forces. This system consists of eight or twelve measuring points in order to acquire the clamping force distribution of the whole range of spring clamp. Each measuring point consists of load cells equipped with 4 strain gauges. Using different bearings, we calibrate the roundness of the measuring points. For quality control and database construction, a software system is established. furthermore, uncertainty is calculated to validate the confidence of this system. Various experiments confirm the effectiveness of this measuring system.

  • PDF

DEVEOPMENT OF MEASURING SYSTEM OF MEMBRANE STRESS FOR MEMBRANE STRUCTURE (막구조물의 막장력 측정장치 개발에 관한 연구)

  • Jung, Hwan-Mok;Woo, Jae-Won;Cho, Byung-Wook;Lee, Seong-Yeun
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.171-178
    • /
    • 2008
  • This paper is concerned with the development of a measurement system using field measuring device which will give the membrane stress of the membrane structures. Up to this point, several techniques on measurement of membrane stresses has been proposed and some have been used in the fields, but accuracy of the measured stresses to be far from reliable one. Such situation has not been changed until recent days, we do not have the measurement device on which we can depend. On top of that, due to the different properties in cross directions for material of the membrane, the stress in the warp direction is different from that in the fill one. A new method is proposed to measured membrane stresses in two different direction separately, where instead of membrane stresses directly, an external force perpendicular to the membrane to be applied. A portable device can measure the applied force and the displacement. A special testing bed to be fabricated to accommodate $50cm{\times}50$ manbrane specimen which can apply 5 ton load in two orthogonal direction. A special device using push-pull gage was developed. To measure the membrane stresses in warp and fill direction separately, a different length of the tips are used. The measuring device which can called tension meter, can be calibrated on the testing bed, and optimized the length and shape of tip.

  • PDF

Development of a Tensile Force Measurement Device of Long Duration (인장력 상시 측정장치 개발에 관한 연구)

  • Shin, Kyung Jae;Hwang, Yun Ha
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.435-445
    • /
    • 2003
  • Tension member is one of the most important elements in tension structure. An economical and reliable measurement method of a member's tensile force has yet to be developed, however. Several conventional measurement methods have some disadvantages when used for long-term, on-site measurement. A new tension-force measurement device was proposed to resolve measuring problems. Its principle was to use the bending part of the device as an elastic spring. The lateral deformation of the bending part due to tensile force can be measured to monitor the tensile force. This device was inserted in the tension member like a turn-buckle. Lateral deformation may be measured in the field at any time for the purpose of maintaining structures. Finite element analysis was used to design the shape and parametric study. Six specimens were tested within the elastic range. The test result showed that the elastic behavior or the bending part was consistent with the analysis' results.

Probing of Surface Potential Using Atomic Force Microscopy

  • Kwon, Owoong;Kim, Yunseok
    • Applied Microscopy
    • /
    • v.44 no.3
    • /
    • pp.100-104
    • /
    • 2014
  • As decreasing device size, probing of nanoscale surface properties becomes more significant. In particular, nanoscale probing of surface potential has paid much attention for understanding various surface phenomena. In this article, we review different atomic force microscopy techniques, including electrostatic force microscopy and Kelvin probe force microscopy, for measuring surface potential at the nanoscale. The review could provide fundamental information on the probing method of surface potential using atomic force microscopy.