• Title/Summary/Keyword: Force Identification

Search Result 365, Processing Time 0.027 seconds

A novel approach for the definition and detection of structural irregularity in reinforced concrete buildings

  • S.P. Akshara;M. Abdul Akbar;T.M. Madhavan Pillai;Renil Sabhadiya;Rakesh Pasunuti
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.2
    • /
    • pp.101-126
    • /
    • 2024
  • To avoid irregularities in buildings, design codes worldwide have introduced detailed guidelines for their check and rectification. However, the criteria used to define and identify each of the plan and vertical irregularities are specific and may vary between codes of different countries, thus making their implementation difficult. This short communication paper proposes a novel approach for quantifying different types of structural irregularities using a common parameter named as unified identification factor, which is exclusively defined for the columns based on their axial loads and tributary areas. The calculation of the identification factor is demonstrated through the analysis of rectangular and circular reinforced concrete models using ETABS v18.0.2, which are further modified to generate plan irregular (torsional irregularity, cut-out in floor slab and non-parallel lateral force system) and vertical irregular (mass irregularity, vertical geometric irregularity and floating columns) models. The identification factor is calculated for all the columns of a building and the range within which the value lies is identified. The results indicate that the range will be very wide for an irregular building when compared to that with a regular configuration, thus implying a strong correlation of the identification factor with the structural irregularity. Further, the identification factor is compared for different columns within a floor and between floors for each building model. The findings suggest that the value will be abnormally high or low for a column in the vicinity of an irregularity. The proposed factor could thus be used in the preliminary structural design phase, so as to eliminate the complications that might arise due to the geometry of the structure when subjected to lateral loads. The unified approach could also be incorporated in future revisions of codes, as a replacement for the numerous criteria currently used for classifying different types of irregularities.

Experimental Identification of Input Power to the Plate Using the Transient Structural Intensity Map

  • Oey, Agustinus;Ih, Jeong-Guon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.110-112
    • /
    • 2009
  • Transient acoustic pressure in the near field of an impacted plate carries information that can be utilized for recovering the impact force history. The inverse calculation approach using BEM-based NAH, which is conventionally used for time harmonic excitation, can be applied for reconstructing the transient waves using the principle of Fourier transform and spectral analysis. Then, using the recovered velocity in normal direction of the plate surface, the corresponding structural intensity can be obtained and the identification of input power can be performed. However, several manipulations should be given to overcome numerical artifacts, such as aliasing and erratic oscillation at discontinuity, and to suppress the effect of noise. Experiment using a simply supported plate is presented for demonstration purpose.

  • PDF

Evaluation of the Identification method of Joint Mechanical Properties Using Isokinetic Movement (등속운동을 이용한 관절계 역학적 특성치 정량화 방법의 유용성 평가)

  • 이창한;허지운;김철승;엄광문
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1190-1193
    • /
    • 2004
  • The purpose of this study is to evaluate the possibility of identifying joint damping property through commercially available isokinetic ergometer (BIODEX). The proposed method is to estimate the damping torque of the knee joint from the difference between the external joint torque for maintaining isokinetic movement and the gravity torque of the lower leg. The damping torque was estimated at various joint angular velocities, from which the damping property would be derived. Measurement setup was composed of the BIODEX system with an external force sensor and Labview system. Matlab was used in the analysis of the damping property. The experimental result showed that the small variation in angular velocity due to acceleration and deceleration of the crank arm resulted in greater change of inertial torque than the damping torque, so that the estimation of damping property from the isokinetic movement is difficult.

  • PDF

QFD and AHP Studies for Technical and System Requirements of RFID Military Applications (QFD와 AHP를 이용한 RFID의 군 요구기술 분석과 향후 적용분야 선정에 관한 연구)

  • Lee, Chul-Ung;Kim, Jin-Tae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.105-115
    • /
    • 2007
  • This study identifies technical barriers and trends on Radio Frequency Identification(RFID) applications for military force, and investigates technical requirements for the RFID implementation on military information systems, based on the preliminary research results from the introductory RFID applications on Ammunition Information System(AIS). We first obtain technical requirements using the Quality Function Deployment(QFD) methods, and identify the areas for research and developments. Furthermore, based on the survey results from military experts and users, we provide the potential application areas for military RFID implementation. Conversely, a technology and research roadmap for RFID in the military system is developed.

A Study on the Experimental Dynamic Identification of Cylindrical Oil Dampers in the Wide Frequency Range (넓은 주파수 범위에서의 실린더형 유체 댐퍼에 대한 실험적 동특성 규명 연구)

  • Moon, S.J.;Kim, H.S.;Chung, T.Y.;Lee, D.H.;Hwang, J.Y.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.528-536
    • /
    • 2010
  • System identification for cylindrical oil dampers is carried out based on a series of dynamic experimental tests and theoretical approach for the analysis of the experimental data. Experimental tests are conducted using a specific hydraulic actuator in the wide frequency range from 10 Hz to 90 Hz. From this study, it is confirmed that control force of the damper is composed of inertia, damping and restoring components. In general, both restoring and damping components are significant and comparable. However, the portion of the inertia components becomes more significant than to be negligible in the high frequency range.

Identification and Control of Electro-Hydraulic Servo System Using DDV

  • Kim, Seung-Hyun;Lee, Chang-Don;Lee, Jin-Kul;Lee, Sang-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.169.1-169
    • /
    • 2001
  • In general, for high performance pressure control system, hydraulic system with electo hydraulic servo valve controls flow rate, it contains many nonlinear term like square-root and change of bulk modulus by flow rate. But, DDV(Direct Drive Valve) contains pressure control loop itself, then it can eliminate nonlinearity and achieve linearity for hydraulic system. In this paper, parameter identification method which uses input and ouput data is applied to obtain DDV's mathematical model and parameter assuming that dynamic characteristic of DDV is first order system. Then, the state feedback controller was designed to implement the force control of hydraulic system , and the control performance was evaluated.

  • PDF

Dynamic Characteristic Analysis of Aerodynamic Load Simulator English (항공기 조종면 부하재현장치의 운동 특성 해석)

  • Nam, Yun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.478-485
    • /
    • 2001
  • A dynamic load simulator(DLS) which can reproduce on-ground the aerodynamic hinge moment of control surface is an essential rig for the performance and stability test of aircraft actuation system. By setting up load actuator as counter acting with the control surface driving actuator and designing an appropriate force control system for load actuator, DLS can be mechanized. Obtaining an accurate mathematical model for the DLS is the first step to successfully design an aerodynamic load replicati on system. Two theoretical models are presented and tested for their validities with the experimental results, which turns out to be not successful. An alternative way of using system identification approaches in investigated to develop a good nominal model for DLS dynamics, and suitable uncertainty bounds for this nominal model are proposed with the consideration of experimental results.

Quantitative damage identification in tendon anchorage via PZT interface-based impedance monitoring technique

  • Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.181-195
    • /
    • 2017
  • In this study, the severity of damage in tendon anchorage caused by the loss of tendon forces is quantitatively identified by using the PZT interface-based impedance monitoring technique. Firstly, a 2-DOF impedance model is newly designed to represent coupled dynamic responses of PZT interface-host structure. Secondly, the 2-DOF impedance model is adopted for the tendon anchorage system. A prototype of PZT interface is designed for the impedance monitoring. Then impedance signatures are experimentally measured from a laboratory-scale tendon anchorage structure with various tendon forces. Finally, damage severities of the tendon anchorage induced by the variation of tendon forces are quantitatively identified from the phase-by-phase model updating process, from which the change in impedance signatures is correlated to the change in structural properties.

Dynamic modeling and system identification for a MMAM controlled flexible manipulator

  • Nam, Yoonsu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.592-598
    • /
    • 1992
  • For a high bandwidth, accurate end of arm motion control with good disturbance rejection, the, Momentum Management Approach to Motion control (MMAM) is proposed. The MMAM is a kind of position control technique that uses inertial forces, applied at or near the end of arm to achieve, high bandwidth and accuracy in movement and in the face of force disturbances. To prove the concept of MMAM, the, end point, control of a flexible manipulator is considered. For this purpose, a flexible beam is mounted on the x-y table, and the MMAM actuator is attached on the top of the flexible beam. A mathematical model is developed for the flexible, beam being controlled by the, MMAM actuator and slide base DC motor. A system identification method is applied to estimate some system parameters in the, model which can not be determined because of the complexity of the mechanism. For the end point, control of the. flexible beam, the, optimal linear output feedback control is introduced.

  • PDF

Tool Fracture Detection Using System Identification (시스템인식을 이용한 공구파손 검출)

  • 사승윤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.119-123
    • /
    • 1996
  • The demands for robotic and automatic system are continually increasing in manufacturing fields. There were so many studies to monitor and predict system, but it were mainly relied upon measuring of cutting force, current of motor spindle and using acoustic sensor, etc. In this study digital image of time series sequence was acquired taking advantage of optical technique. Then, mean square error was obtained from it and was available for useful observation data. The parameter was estimated using PAA(parameter adaptation algorithm) from observation data. AR model was selected for system model, fifth order was decided according to parameter estimation. Uncorrelation test was also carried out to verify convergence of parameter. Through the proceedings, we found there was a system stability.

  • PDF