• Title/Summary/Keyword: Force Dynamics theory

Search Result 85, Processing Time 0.022 seconds

Comparative Study on the Structural and Thermodynamic Features of Amyloid-Beta Protein 40 and 42

  • Lim, Sulgi;Ham, Sihyun
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.237-249
    • /
    • 2014
  • Deposition of amyloid-${\beta}$ ($A{\beta}$) proteins is the conventional pathological hallmark of Alzheimer's disease (AD). The $A{\beta}$ protein formed from the amyloid precursor protein is predominated by the 40 residue protein ($A{\beta}40$) and by the 42 residue protein ($A{\beta}42$). While $A{\beta}40$ and $A{\beta}42$ differ in only two amino acid residues at the C-terminal end, $A{\beta}42$ is much more prone to aggregate and exhibits more neurotoxicity than $A{\beta}40$. Here, we investigate the molecular origin of the difference in the aggregation propensity of these two proteins by performing fully atomistic, explicit-water molecular dynamics simulations. Then, it is followed by the solvation thermodynamic analysis based on the integral-equation theory of liquids. We find that $A{\beta}42$ displays higher tendency to adopt ${\beta}$-sheet conformations than $A{\beta}40$, which would consequently facilitate the conversion to the ${\beta}$-sheet rich fibril structure. Furthermore, the solvation thermodynamic analysis on the simulated protein conformations indicates that $A{\beta}42$ is more hydrophobic than $A{\beta}40$, implying that the surrounding water imparts a larger thermodynamic driving force for the self-assembly of $A{\beta}42$. Taken together, our results provide structural and thermodynamic grounds on why $A{\beta}42$ is more aggregation-prone than $A{\beta}40$ in aqueous environments.

  • PDF

A Study on the Development of Mathematical Model of Three-stage Flow Control Valve

  • Khan, Haroon Ahmad;Kang, Chang Nam;Yun, So Nam
    • Journal of Drive and Control
    • /
    • v.15 no.2
    • /
    • pp.38-45
    • /
    • 2018
  • In this study, the theory of fluid mechanics and dynamics is used to build a mathematical model for a three-stage flow control valve. The significance of the study is that the mathematical model can easily be used to study the effect of different design parameters on the performance of the valve. The geometry of the valve and the properties of the fluid were used in this study to determine the variation in the performance of the valve when varying the magnetic force on the pilot spool. While a linearization technique is not used to solve the developed model, the solution of the mathematical model is found in the time domain by simulation of the equations using a software package. The results indicate that if the developed mathematical model is solved for the different values of magnetic force, the valve behaves linearly; the valve is thus called the proportional flow control valve.

Design of a Sliding Mode Control-Based Trajectory Tracking Controller for Marine Vehicles

  • Xu, Zhi-Zun;Kim, Heon-Hui;Park, Gyei-Kark;Nam, Taek-Kun
    • Journal of Navigation and Port Research
    • /
    • v.42 no.2
    • /
    • pp.87-96
    • /
    • 2018
  • A trajectory control system plays an important role in controlling motions of marine vehicle when a series of way points or a path is given. In this paper, a sliding mode control (SMC)-based trajectory tracking controller for marine vehicles is presented. A small-sized unmanned ship is considered as a control object. Both speed and heading angle of a ship should be controlled for tracking control. The common point of related researches was to separate ship's speed and heading angle in control methods. In this research, a new control law from a general sliding mode theory that can be applied to MIMO (multi input multi output) system is derived and both speed and heading angle of a ship can be controlled simultaneously. The propulsion force and rudder force are also applied in modeling stage to achieve accurate simulation. Disturbance induced by wind is also tackled in the dynamics considering robustness of the proposed control scheme. In the simulation, we employed a way-point method to generate ship's trajectory and applied the proposed control scheme to ship's trajectory tracking control. Our results confirmed that the tracking error was converged to zero, thus demonstrating the effectiveness of the proposed method.

A Study on the Balance of Power and Changes in Military Strength in Northeast Asia: Prospect of the Northeast Asian Security Environment in 2030 Based on the Balance of Power Theory (동북아시아의 세력균형과 군사력 수준 변화 연구: 세력균형이론에 기초한 2030년경의 동북아시아 안보환경 전망)

  • Kim, Myung-soo
    • Maritime Security
    • /
    • v.3 no.1
    • /
    • pp.73-114
    • /
    • 2021
  • This study examines the distribution of power in Northeast Asia based on the balance of power theory, a representative theory of realism, assuming military capabilities as the core power of states. The results of previous studies on the balance of power and military forces are reviewed and used to analyze changes in the strength of the US, China, Russia, Japan, South Korea, and North Korea through 2020 to predict the security environment in 2030. In the balance of power theory, if the balance of power between a nation or a group of powers collapses, the possibility of war is high, and to survive in the international community with high uncertainty and distrust, the theory predicts that states must increase their powers in a self-help world and strengthen cooperation and alliance. Countries in Northeast Asia are also continuing to strengthen their military capabilities, and countries neighboring China are paying keen attention and remaining vigilant due to the rapid changes in the international security environment after the rapid rise of China. To mark the future 100th anniversary of the Chinese armed forces in the 2030s, China aims to realize 'defense and military modernization' and build a 'world-class military force' by the nation's 100th anniversary in the 2050s. The US is busy checking China's rise by strengthening international cooperation and alliances. The security environment and power dynamics in Northeast Asia are slowly changing as the US and China continue to compete for global hegemony. The changes and implications of the distribution of power in Northeast Asia after 2030 are examined based on the balance of power theory.

  • PDF

Dynamic Analysis of Engine Valve Train with Flexible Multibody Model Considering Contact between Components (부품간의 접촉을 고려한 유연체모델을 이용한 엔진 밸브트레인의 동특성 해석)

  • Hwang, Won-Gul;Sung, Won-Suk;Ahn, Ki-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.125-132
    • /
    • 2011
  • The dynamic characteristics of valve train are responsible for the dynamic performances of engine. We derived the equation of motion for 6 degrees of freedom model of the valve train. Computer model is also developed with flexible multibody model considering contact between components. The simulation results with these two models are compared with experimental results. We investigated the effect of the two spring models, TSDA (Translational Spring Damper Actuator) element and flexible body model, on the valve behavior and spring force. It is found that the dynamic behavior of the two models are not very different at normal operational velocity of the engine. By modeling contact between cam and tappet, the stress distributions of the cam were found. Using stress distribution obtained, contact width and contact stresses of the cam surface were calculated with Hertz contact theory.

Seismic Response Control of Bridge Structures Using Semi-Active Fuzzy Control of MR Damper (MR Damper의 준능동 퍼지제어이론을 이용한 교량구조물의 지진응답제어)

  • 박관순;고현무;옥승용;서충원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.459-466
    • /
    • 2002
  • In this study magneto-rheological damper, a kind of semi-active device, is used to reduce the response of pier and girder of bridge structure subjected to seismic excitation and as a effective semi-active control method fuzzy control technique considering nonlinear behavior of the damper dynamics. By Numerical simulations of a nine span continuous bridge system subjected to various earthquakes, fuzzy control technique is compared with existing clipped optimal control technique in control performance which reduces displacement of pier and girder simultaneously. In the comparison of the control performance within a control force limit, it is confirmed that presented fuzzy control technique more efficiently reduce the pier and girder displacement than clipped optimal control technique based on optimal control theory.

  • PDF

Self-Regulation of Star Formation Rates: an Equilibrium Vieww

  • Kim, Chang-Goo;Ostriker, Eve C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.55.2-55.2
    • /
    • 2016
  • In this talk, I will present a theoretical and numerical framework for self-regulation of the star formation rates (SFRs) in disk galaxies. The theory assumes (1) force balance between pressure support and the weight of the interstellar medum (ISM), (2) thermal balance between radiative cooling in the ISM and heating via FUV radiation from massive young stars, and (3) turbulent energy balance between dissipation in the ISM and driving by momentum injection of SNe. Numerical simulations show vigorous dynamics in the ISM at all times, but with proper temporal and spatial averages, all the expected balances hold. This leads to a scaling relation between mean SFRs and galactic gas and stellar properties, arising from the fundamental relationship between SFR surface density and the total midplane pressure.

  • PDF

Responses and Modal Analyses of Micro Double Cantilever Beams Interacted by Elctrostatic Forces (정전기력을 받는 마이크로 이중 외팔 보의 응답 및 모드 해석)

  • Jung, Kang-Sik;Moon, Seung-Jae;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.199-205
    • /
    • 2005
  • The governing equations of micro double cantilever beam structures interacted by electrostatic forces are obtained employing Galerkin's method based on Euler beam theory. Variations of static and dynamic responses as well as natural frequencies are estimated for applied voltages. In particular, it is investigated how the variations of beam properties resulted by manufacturing process influence the deflections and the modal characteristics. This study can help to design MEMS structures and to predict the performances with respect to manufacturing tolerances.

Acceleration analysis by using line geometry and its application to dynamics (선 기하를 이용한 가속도 해석과 동역학에의 적용)

  • 홍만복;최용제
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.912-915
    • /
    • 2002
  • It has been known that general velocity and force of a rigid body in space can be described in forms of a twist and a wrench by use of screws. However, the geometrical meaning of acceleration has not been clearly disclosed. It has been a normal practice to analyze or synthesize the acceleration effect of manipulator using some complex mathematical equations, which do not represent any geometrical meanings. In other words, such a technique doesn't clearly provide information about the overall acceleration state of manipulator at that instant. In this study, the geometrical meaning of acceleration of a rigid body has been investigated and thereby a geometrical procedure which can be applied to inverse acceleration analysis of a general non-redundant manipulator is presented as an application.

  • PDF

FORMATION OF INTERMEDIATE-SCALE STRUCTURES IN SPIRAL GALAXIES

  • KIM WOONG-TAE
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.243-248
    • /
    • 2004
  • Disk galaxies abound with intermediate-scale structures such as OB star complexes, giant clouds, and dust spurs in a close geometrical association with spiral arms. Various mechanisms have been proposed as candidates for their origin, but a comprehensive theory should encompass fundamental physical agents such as self-gravity, magnetic fields, galactic differential rotation, and spiral arms, all of which are known to exist in disk galaxies. Recent numerical simulations incorporating all these physical processes show that magneto-Jeans instability (MJI), in which magnetic tension resists the stabilizing Coriolis force of galaxy rotation, is much more powerful than swing-amplification or the Parker instability in forming self-gravitating intermediate-scale structures. The MJI occurring in shearing and expanding flows off spiral arms rapidly forms structures elongated along the direction perpendicular to the arms, remarkably similar to dust spurs seen in HST images of spiral galaxies. In highly nonlinear stages, these spurs fragment to form bound clumps, possibly evolving into bright arm and interarm H II regions, suggesting that all these intermediate-scale structures in spiral galaxies probably share a common dynamical origin.