• Title/Summary/Keyword: Force Convection

Search Result 93, Processing Time 0.028 seconds

Modelling of transport phenomena and meniscus shape in Czochralski growth of silicon material

  • Bae, Sun-Hyuk;Wang, Jong-Hoe;Kim, Do-Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.5
    • /
    • pp.454-458
    • /
    • 1999
  • Hydrodynamic Thermal Capilary Model developed previously has been modified to study the transport phenomena in the Czochralski process. Our analysis is focused on the heat transfer in the system, convection in the melt phase, and the meniscus and interface shape. Four major forces drive melt flow in the crucible, which include thermal buoyancy force in the melt, thermocapillary force along the curved meniscus, crucible rotation and crystal rotation. Individual flow mechanism due to each driving force has been examined to determine its interaction with the meniscus and interface shape. A nominal 4-inch-diameter silicon crystal growth process is chosen as a subject for analysis. Heater temperature profile for constant diameter crystal is also present as a function of crystal height or fraction solidified.

  • PDF

Time Estimation of Forming and Extinguishing Arc in the dc Contactor at Opening Contacts (접점 개방시 직류 접촉기의 아크 형성과 소호 시간 예측법)

  • Cho Hyun-Kil;Lee Eun-Woong;Kim Jun-Ho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.788-790
    • /
    • 2004
  • This paper describes the phenomenon of the molten metal bridge theory of the arc discharge at opening contacts. And we analyze the magnetic force and drag force acting on the arc column in the DC magnetic contactor Arc cooling time by the force convection is calculated in the thermal dynamic equation using mean temperature method. Since arc gas lost conduction characteristics below a such temperature, it verify that the process of forming and extinguishing arc is able to analyze in terms of temperature characteristic by simulation and experiments of the 3 types arc extinction unit. It propose the practical simulation method to improve the electrical endurance of dc contactor.

  • PDF

Characteristics of Heat Transfer of Natural Convection for Magnetic Fluids in Annular Pipes (이중원관내 자성유체의 자연대류에 대한 전열특성)

  • Park, J.W.;Jun, C.H.;Seo, L.S.;Ryu, S.O.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.2
    • /
    • pp.73-79
    • /
    • 2002
  • Compared with Newtonial fluids, magnetic fluids have effects on magnetic force. In this study, the purpose is to research the heat transfer characteristic of magnetic fluids which have metalic and fluid characteristics as the external pipe is being cooled and internal pipe is heated. This study found the experimental results from the study of the variety of natural convection for magnetic fluids and the characteristics of the heat transfer by using numerical analysis according to the strength and direction of the magnetic fields from being imposed from the outside. Natural convection of magnetic fluids was controlled by the impressed magnetic fields, and the result of mean nusselt number was calculated. If the impressed magnetic field is in the direction of gravity or the strength of impressed magnetic field is more than -14 mT in the opposite direction, the heat transfer is more than that without the impressed magnetic field. If the strength of impressed magnetic field is less than -14 mT in the opposite direction, it is smaller than that without the impressed magnetic field. Especially, when the strength of the magnetic field is -14 mT, the heat transfer was at the minimum.

Effects of Double-diffusive Convection on the Mass Transport of Copper Ions in a Horizontal Porous Layer (수평 다공성유체층에서 이온의 물질전달에 대한 이중확산대류 효과)

  • Yoon Do-Young;Kim Min Chan;Choi Chang Kyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.98-105
    • /
    • 1999
  • In the present study, buoyant force and its stabilizing effects in an electrostatic field were examined systematically in order to reduce the effect of natural convection with thermal stratification in a horizontal fluid-saturated porous layer. The correlation of ionic mass transport induced by double-diffusive convection in a horizontal porous layer has been derived theoretically. And the theoretical model was examined by electrochemical experiments. The theoretical correlation for mass transport which is satisfying Forchheimer's flow equation and based on the micro-turbulence model is derived as a function of soltual Darcy-Rayleigh number, thermal Darcy-Rayleigh number and Lewis number. In the experiment, the mass transport of copper ions in $CuSO_4-H_2SO_4$ solution is measured by electrochemical technique. By assembling theoretical correlation and experimental results, the mass transport correlation induced by double-diffusive convection is proposed as $$Sh=\frac{0.03054(Rs_D-LeRa_D)^{1/2}}{1-3.8788(Rs_D-LeRa_D)^{-1/10}}$$ The present correlation looks flirty reasonable with comparing experimental results, and very promising for the applications of its prototype into various systems involving heat transfer as well as mass transfer, in order to control the effects of natural convection effectively.

EVOLUTION OF THE EARTH AND OCCURRENCE OF EARTHQUAKES

  • Rathore, Narpat Singh
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.369-371
    • /
    • 2003
  • This paper attempts to study the evolution of the Solar System including the earth through various existing hypotheses and the occurrence of earthquakes on the earth. From the analysis of the various theories it can be inferred that the Mystery regarding evolution of Solar System is a complex problem which requires continuos research. The occurrence of the earthquake is also affected by the earth's rotation, which produces Centrifugal Force, which together with convection current causes plate displacement resulting in earthquakes. The extent of displacement varies with the size and density of the plates.

  • PDF

Analysis oil the Thermal Characteristics of the Spindle with High Frequency Motor according to the Cooling Methods (고주파 모터 내장형 주축의 냉각에 따른 열특성 해석)

  • 김수태;최대봉;조환석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.969-974
    • /
    • 2002
  • Thermal characteristics according to the cooling methods are studied for the three type spindles with high frequency motor. For the analysis, three dimensional mode]s are built considering heat transfer characteristics such as natural and force convection coefficients. Unsteady-state temperature distributions and thermal deformations according to the cooling conditions are analyzed by using the finite element method.

  • PDF

A Study on the Dominant Driving Force of Plate Movement presented in the High School Earth Science Textbooks (고등학교 지구과학 교과서에 제시된 판 이동의 주된 원동력에 대한 고찰)

  • Jeon, Taehwan;Seo, Ki-Weon;Lee, Gyuho
    • Journal of the Korean earth science society
    • /
    • v.37 no.1
    • /
    • pp.62-77
    • /
    • 2016
  • In the early model of plate tectonics, the plate was depicted as a passive raft floating on the convecting mantle and carried away by the mantle flow. At the same time, ridge push at spreading boundaries and drag force exerted by the mantle on the base of lithosphere were described as the dominant driving forces of plate movements. However, in recent studies of plate tectonics, it is generally accepted that the primary force driving plate motion is slab pull beneath subduction zones rather than other forces driven by mantle convection. The current view asserts that the density contrast between dense oceanic lithosphere and underlying asthenosphere is the substance of slab pull. The greater density of oceanic slab allows it to sink deeper into mantle at trenches by gravitational pull, which provides a dominant driving force for plate motion. Based on this plate tectonics development, this study investigated the contents of plate tectonics in high school Earth Science textbooks and how they have been depicted for the last few decades. Results showed that the early explanation of plate movement driven by mantle convection has been consistently highlighted in almost all high school textbooks since the 5th curriculum, whereas most introductory college textbooks rectified the early theory of plate movement and introduced a newly accepted theory in revised edition. Therefore, we suggest that the latest theory of plate tectonics be included in high school textbooks so that students get updated with recent understanding of it in a timely manner.

EFFECT OF ORIENTATION OF A MAGNETIC FIELD ON MOTION OF AN ELECTRICALLY CONDUCTING FLUID IN A CONFINED ENCLOSURE (자장 방향 변화에 따른 밀폐공간 내 도전성 유체의 거동)

  • Han, C.Y.;Jun, H.Y.;Park, E.S.
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.123-130
    • /
    • 2009
  • Hydromagnetic flow in a confined enclosure under a uniform magnetic field is studied numerically. The thermally active side walls of the enclosure are kept at hot and cold temperatures specified, while the top and bottom walls are insulated. The coupled momentum and energy equations associating with the electromagnetic retarding force as well as the buoyancy force terms are solved by an iterative procedure using the SIMPLER algorithm based on control volume approach. The changes in the flow and thermal field based on the orientation of an external magnetic field, which varies from 0 to $2{\pi}$ radians, are investigated. Resulting heat transfer characteristics are examined too.

An Analysis of Heat and Fluid Flow in the Laser Surface Melting with a Deformed Surface. (굴곡의 표면을 가진 금속의 레이저 용융에 대한 열 및 유체유동 해석)

  • Kim, Young-Deuk;Sim, Bok-Cheol;Kim, Woo-Seung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.139-144
    • /
    • 2003
  • Laser melting problems with deformed substrates are investigated by axisymmetric numerical simulations. Source-based method is used to solve the energy equation, and the momentum equations are solved in the liquid domain with SIMPLER algorithm. Using a laser beam with a top-hat heat flux distribution, this study is performed to examine the effect of surface deformation, beam power density and surface tension force on the melt pool during laser melting. Surface temperature decreases with increasing surface deformation, while surface velocity increases. It is found that surface deformation, beam power density and surface tension force have a very significant effect on heat transfer and fluid flow during laser melting.

  • PDF

An Analysis of Heat and Fluid Flow in the Laser Surface Melting with a Deformed Surface (굴곡의 표면을 가진 금속의 레이저 용융에 대한 열 및 유체유동 해석)

  • Kim, Young-Deuk;Sim, Bok-Cheol;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.1-8
    • /
    • 2005
  • Laser melting problems with deformed substrates are investigated by axisymmetric numerical simulations. Source-based method is used to solve the energy equation, and the momentum equations are solved in the liquid domain with SIMPLER algorithm. Using a laser beam with a top-hat heat flux distribution, this study is performed to examine the effect of surface deformation, beam power density and surface tension force on the molten pool during laser melting. Surface temperature decreases with increasing surface deformation, while surface velocity increases. It is found that surface deformation, beam power density and surface tension force have a very significant effect on heat transfer and fluid flow during laser melting.