• Title/Summary/Keyword: Force Components

Search Result 1,049, Processing Time 0.027 seconds

Microassembly System for the assembly of photonic components (광 부품 조립을 위한 마이크로 조립 시스템)

  • 강현재;김상민;남궁영우;김병규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.241-245
    • /
    • 2003
  • In this paper, a microassembly system based on hybrid manipulation schemes is proposed and applied to the assembly of a photonic component. In order to achieve both high precision and dexterity in microassembly, we propose a hybrid microassembly system with sensory feedbacks of vision and force. This system consists of the distributed 6-DOF micromanipulation units, the stereo microscope, and haptic interface for the force feedback-based microassembly. A hybrid assembly method, which combines the vision-based microassembly and the scaled teleoperated microassembly with force feedback, is proposed. The feasibility of the proposed method is investigated via experimental studies for assembling micro opto-electrical components. Experimental results show that the hybrid microassembly system is feasible for applications to the assembly of photonic components in the commercial market with better flexibility and efficiency.

  • PDF

Computation of the inviscid drift force caused by nonlinear waves on a submerged circular cylinder

  • Koh, Hyeok-Jun;Cho, Il-Hyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.201-207
    • /
    • 2011
  • In this paper, we focused on computing the higher-harmonic components of the transmitted wave passing over a submerged circular cylinder to show that it is causing a horizontal negative drift force. As numerical models, a circular cylinder held fixed under free surface in deep water is adopted. As the submergence of a circular cylinder decreases and the incident wavelength becomes longer, the higher-harmonic components of the transmitted wave starts to increase. An increase of the higher-harmonic components of the transmitted wave makes the horizontal drift force be negative. It is also found that the higher-harmonic amplitudes averaged over the transmitted wave region become larger with the increase of wave steepness and wavelength as well as the decrease of submergence depth.

Fractional effect in an orthotropic magneto-thermoelastic rotating solid of type GN-II due to normal force

  • Lata, Parveen;Himanshi, Himanshi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.503-511
    • /
    • 2022
  • In this article, we have examined the effect of fractional order parameter in a two-dimensional orthotropic magneto-thermoelastic solid in generalized thermoelasticity without energy dissipation with fractional order heat transfer in the context of hall current, rotation and two-temperature due to normal force. Laplace and Fourier transform techniques are used to obtain the solution of the problem. The expressions for displacement components, stress components, current density components and conductive temperature are obtained in transformed domain and then in physical domain by using numerical inversion method. The effect of fractional parameter on all the components has been depicted through graphs. Some special cases are also discussed in the present investigation.

Effect of Prolonged Running-induced Fatigue on Free-torque Components

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.1
    • /
    • pp.31-37
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate the differences in FT (free-torque) components between non-fatigue and fatigue conditions induced by prolonged running. Methods: Fifteen healthy runners with no previous lower-extremity fractures ($22.0{\pm}2.1$ years of age) participated in this study. Ground reaction force data were collected for the right-stance phase for 10 strides of 5 and 125-min running periods at 1,000 Hz using an instrumented force platform (instrumented dual-belt treadmills, Bertec, USA) while the subjects ran on it. The running speed was set according to the preferences of the subjects, which were determined before the experiment. FT variables were calculated from the components of the moment and force output from the force platform. A repeated-measures one-way ANOVA was used to test for significant differences between the two conditions. The alpha level for all the statistical tests was 0.05. Results: The absolute FT at the peak braking force was significantly greater after 5 mins of running than after 125 mins of running-which was regarded as a fatigued state-but there were no significant differences in the absolute peak FT or impulse between the conditions. Conclusion: The FT variables in the fatigue condition during prolonged running hardly affect the tibial stress syndrome.

A note on "An Experimental Study on the Propulsive Characteristics of Sculls" ("선미 노의 추력발생기구 규명을 위 실험적 연구"에 관한 노트)

  • 사쿠라이다케오
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.88-92
    • /
    • 2001
  • H. Kim, B.K. Lee and C.K. Rheem have been experimentally studied to clarified the mechanism of thrust force generated by sculling motion for the propulsion of Korean small boats. The experimental investigations have been conducted under the bollard condition by installing a scull at the end of a trimming tank of towing tank. The sculling motion produced by the skilful fisherman and the resultant venerated forces have been measured in respect to the Cartesian coordinate fitted to the pivot point of the scull. ("An Experimental Study on the Propulsive Characteristics of Sculls". J. of the Soc. of Naval Arch. of Korea, Vol. 26, No. 3, 1989, pp.13-24) Through these experiments the trajectory of the blade tip and the angular displacement of the blade section have been measured as shown in Fig. 1 and 2 of this paper. And at the same time the resultant hydrodynamic force components are expressed in Fig. 3 and 4. These three dimensional data of sculling motion and generated real time force components are the unique experimental information which could clarify the thrust force generating mechanism of sculling motion. The experimental results have been reanalyzed by focusing the relation between instantaneous attack angle of blade section and the resultants real time force components. Through these investigation it is found out that the conventional imagination that the 7cull motion should be effective in generating lift force must be reconsidered because the attack angle of scull blade are too great to free from stall phenomena during the sculling operation.

  • PDF

Evaluation of Force Components and Newmark Sliding Block Analysis of Quay Walls during Earthquake (지진동을 받는 중력식 안벽에 작용하는 하중산정 및 Newmark 변위해석)

  • 김성렬;하익수;권오순;김명모
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.93-100
    • /
    • 2002
  • In this paper, new simple model is developed to evaluate the variation of the magnitude and the phase contrast of force components with the development of excess pore pressure in backfill soil. Also, Newmark sliding block analysis is performed inputting the calculated total force from new model. The applicability of new simple model and Newmark sliding block model is verified from the analyses of 1g shaking table test results.

  • PDF

Behaviour insights on damage-control composite beam-to-beam connections with replaceable elements

  • Xiuzhang He;Michael C.H. Yam;Ke Ke;Xuhong Zhou;Huanyang Zhang;Zi Gu
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.773-791
    • /
    • 2023
  • Connections with damage concentrated to pre-selected components can enhance seismic resilience for moment resisting frames. These pre-selected components always yield early to dissipate energy, and their energy dissipation mechanisms vary from one to another, depending on their position in the connection, geometry configuration details, and mechanical characteristics. This paper presents behaviour insights on two types of beam-to-beam connections that the angles were designed as energy dissipation components, through the results of experimental study and finite element analysis. Firstly, an experimental programme was reviewed, and key responses concerning the working mechanism of the connections were presented, including strain distribution at the critical section, section force responses of essential components, and initial stiffness of test specimens. Subsequently, finite element models of three specimens were established to further interpret their behaviour and response that were not observable in the tests. The moment and shear force transfer paths of the composite connections were clarified through the test results and finite element analysis. It was observed that the bending moment is mainly resisted by axial forces from the components, and the dominant axial force is from the bottom angles; the shear force at the critical section is primarily taken by the slab and the components near the top flange. Lastly, based on the insights on the load transfer path of the composite connections, preliminary design recommendations are proposed. In particular, a resistance requirement, quantified by a moment capacity ratio, was placed on the connections. Design models and equations were also developed for predicting the yield moment resistance and the shear resistance of the connections. A flexible beam model was proposed to quantify the shear resistance of essential components.

Tool Wear Monitoring System in CNC End Milling using Hybrid Approach to Cutting Force Regulation (하이브리드 방식의 절삭력 평준화를 통한 CNC 엔드 밀링에서의 공구 마모 모니터링 시스템)

  • Lee, Kang-Jae;Yang, Min-Yang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.20-29
    • /
    • 2004
  • A Tool wear monitoring system is indispensable for better machining productivity with guarantee of machining safety by informing the tool changing time in automated and unmanned CNC machining. Different from monitoring using other signals, the monitoring of spindle current has been used without requiring additional sensors on machine tools. For the reliable tool wear monitoring, current signal only of tool wear should be extracted from other parameters to avoid exhaustive analyses on signals in which all parameters are fused. In this paper, influences of force components of parameters on measured spindle current are investigated and a hybrid approach to cutting force regulation is employed for tool wear signal extraction in the spindle current. Finally, wear levels are verified with experimental results by means of real-time feedrate aspects changed to regulate the force component of tool wear.

  • PDF

Influence of Backfill Condition on Force Components of Gravity Walls During Earthquakes (지진시 배면지반 조건이 중력식 안벽의 하중성분에 미치는 영향)

  • Kim Sung-Ryul;Hwang Jae-Ik;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.1
    • /
    • pp.15-23
    • /
    • 2006
  • During earthquake, force components acting on quay walls consist of inertia force, earth pressure and water pressure. The earth pressure is largely influenced by the backfill condition such as soil density and the installation of gravel backfill. Therefore, shaking table tests were performed by using four different model sections, which were designed by varying the soil density and the backfill materials. The magnitude and the phase of force components acting on quay wall were analyzed. Test results showed that the gravel backfill and the soil compaction were effective to reduce the excess pore pressure in backfill and the magnitude and phase of backfill thrust were much influenced by the excess pore pressure in backfill. When the input acceleration was 0.10g, the average ratios of the inertia force, the front dynamic water force and the thrust to the total force were $64\%,\;21\%\;and\;16\%$, respectively. As the excess pore pressure increased, the ratio of the thrust to the total force increased.

Effects of Fatigue Induction on Ground Reaction Force Components, Postural Stability, and Vertical Jump Performance in Taekwondo Athletes

  • Hyun, Seung-Hyun;Kim, Young-Pyo;Ryew, Che-Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.2
    • /
    • pp.143-151
    • /
    • 2016
  • Objective: The purpose of this study was to investigate the effect of fatigue induction on ground reaction force (GRF) components, postural stability, and vertical jump performance in Taekwondo athletes. Method: Ten Taekwondo athletes (5 men, 5 women; mean age, $22.30{\pm}2.62years$; mean height, $174.21{\pm}9.20cm$; mean body weight, $67.28{\pm}12.56kg$) participated in this study. Fatigue was induced by a short period of strenuous exercise performed on a motorized treadmill. The analyzed variables included vertical jump performance, static stability (mediolateral [ML], center of pressure [COP], anteroposterior [AP] COP, ${\Delta}COPx$, ${\Delta}COPy$, and COP area), postural stability index values (ML stability index [MLSI], AP stability index [APSI], vertical stability index [VSI], dynamic postural stability index [DPSI]), and GRF components (ML force, AP force, peak vertical force [PVF], and loading rate). To analyze the variables measured in this study, PASW version 22.0 was used to calculate the mean and standard deviation, while a paired t-test was used to evaluate the pre- versus post-fatigue results. Pearson's correlation coefficients among variables were also analyzed. The statistical significance level was set at ${\alpha}$ = .05. Results: Vertical jump performance decreased significantly after the induction of fatigue, while AP COP, ${\Delta}COPx$, COP area, APSI, VSI, and DPSI increased significantly. PVF and loading rate increased significantly after the induction of fatigue, while the postural stability variables (AP COP, ${\Delta}COPy$, COP area, APSI, VSI, DPSI) were similarly correlated with GRF components (PVF, loading rate) after fatigue was achieved (r = .600, $R^2$ = 37%). Conclusion: These results suggest that the induction of fatigue can decrease postural stability and exercise performance of Taekwondo athletes during training and competition sessions.