• Title/Summary/Keyword: For-loop

Search Result 7,180, Processing Time 0.035 seconds

Characteristic for the Near Field of Rectangle Loop Antenna using Optical Electric-Field Sensor (광전계 센서를 이용한 구형 Loop Antenna의 근접전계 특성)

  • 이주현;도쿠다마사미추;하덕호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.3
    • /
    • pp.217-225
    • /
    • 2003
  • In this paper, in order to investigate the near field distribution characteristic of the Loop Antenna we simulated and measured the near field of a Loop Antenna using optical electric-field sensor in a large Chamber(8.5 m x 7 m x 7 m). The simulation methods were used MoM for frequency domain and FDTD for time domain. From the analysis results, it can be seen that the simulation and measurement results are very aggregated, and the optical electric-field sensor is a certificate of validity. In frequency domain, in case of the optical sensor with vertical polarization is located above the near vertical line of the Loop Antenna the signal strength level is more 15 ㏈ than with horizontal polarization. But in case of the optical sensor located above horizontal line of the Loop Antenna, signal strength level is not different. And, in the time domain, although input signal is positive, in the case of the optical sensor with vertical polarization is located above horizontal line of the Loop Antenna, it can be seen that the received pulse shape is negative.

An Efficient Loop Splitting Method on Single Loop with Non-uniform Dependences (비균일 단일루프에서의 효율적인 루프 분할 방법)

  • Jeong Sam-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.4
    • /
    • pp.204-211
    • /
    • 2005
  • This paper introduces three loop splitting methods such as minimum dependence distance method, Polychronopoulous' method, and first dependence method for exploiting parallelism from single loop which already developed. And it also Indicates their several problems. We extend the first dependence method which is the most effective one among three loop splitting methods, and propose more powerful loop splitting method to enhance parallelism on single loop. The proposed algorithm solves several problems, such as anti-flow dependence and g=gcd(a,c) > 1, that the first dependence method has.

  • PDF

Feedback Loop Design for Micro Gyroscope

  • Sung, Woon-Tahk;Song, Jin-Woo;Lee, Jang-Gyu;Taesam Kang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.39.4-39
    • /
    • 2002
  • This paper presents a design and implementation of a PID feedback control loop for micro gyroscope. The feedback control loop improves the gyroscope performance such as linearity, bandwidth, and bias stability for micro gyroscope which is basically a high-Q system and exhibits a low performance with an open loop control. The designed and implemented feed-back control loop is applied to the SNU-Bosch MEMS gyroscope to demonstrate the improvement with the feedback control loop. The bandwidth is improved to 60Hz from 25Hz of open loop control. The linearity becomes 0.5% from 1%. The bias stability is improved to 0.03 deg/sec from 0.06 deg/sec.

  • PDF

Design of a 16-QAM Carrier Recovery Loop for Inmarsat M4 System Receiver (Inmarsat M4 시스템 수신기를 위한 16-QAM Carrier Recovery Loop 설계)

  • Jang, Kyung-Doc;Han, Jung-Su;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.440-449
    • /
    • 2008
  • In this paper, we propose a 16-QAM carrier recovery loop which is suitable for the implementation of Inmarsat M4 system receiver. Because the frequency offset of ${\pm}924\;Hz$ on signal bandwidth 33.6 kHz is recommended in Inmarsat M4 system specification, carrier recovery loop having stable operation in the channel environment with large relative frequency offset is required. the carrier recovery loop which adopts only PLL can't be stable in relatively large frequency offset environment. Therefore, we propose a carrier recovery loop which has stable operation in large relative frequency offset environment for Inmarsat M4 system. The proposed carrier recovery loop employed differential filter-based noncoherent UW detector which is robust to frequency offset, CP-AFC for initial frequency offset acquisition using UW signal, and 16-QAM DD-PLL for phase tracking using data signal to overcome large relative frequency offset and achieve stable carrier recovery performance. Simulation results show that the proposed carrier recovery loop has stable operation and satisfactory performance in large relative frequency offset environment for Inmarsat M4 system.

Integrated Simulation System of Aircraft

  • Wang, Xingren
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.68-71
    • /
    • 2001
  • Integrated Simulation System of Aircraft is a networked virtual synthetic environment. This paper presents hardware-in-the-loop simulation, man-in-the-loop simulation, computer generated aircraft, virtual prototype of aircraft dynamics, and networked simulation system.

  • PDF

Design loop-filter for GHz-range charge-pump PLL (GHz급 charge-pump PLL응용을 위한 루프 필터 설계)

  • 정태식;전상오
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.11
    • /
    • pp.76-85
    • /
    • 1997
  • Charge-pump loop filter was designed using GaAs MESFET for GHz-range PLL system applications. Characteristics of charge-pump loop filter and stability of charge-pump PLL, system were analyzed. Performance specifications were defined and a charge-pump loop filter was designed that satisfies these specifications.

  • PDF

Under the fading channel environment, performance evaluation of AF CR loop Due to the quantization effect (페이딩 채널 환경하에서의 양자화 특성에 의한 AF CR loop의 성능평가)

  • 송재철;이경하;김선형;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.3
    • /
    • pp.737-746
    • /
    • 1996
  • In this paper, we present simulation result of quantization effects about a new Angular From Carrier Recovery Loop(AF CR loop) for PSK modulation technique. AF CR loop includes detected angle symbol and Multi Level hardimiter. In general, detected angle is used in dtermining symbol. Because detected angle is used to make an error signal of phase detector output, hardware implementation of AF CR loop is simpler than that of other loops. Before hardware implementation of AF CR loop, the result due to quantization effect should be investigated. In order to confirm quntization effect of AF CR loop, we evaluate performance of this loop by Monte-Carlosimulation method. Under both in the AWGN and Jake's fading noise channel environments, we confirmed the characteristics of AF CR loop in terms of RMS jitter due to quntization effect. Differential APSK modulation schemeis used in this paper. Especially, Jake's fading channel is used as a channel model and also AGC(Automatic Gain Control) is used in the overall process of performance evaluation. We obtained the resonable result of quantization effect about AF CR loop. With the result of performanceevaluation based on quantization effects, we can expect to operate AF CRloop under the fading channel environments reasonably well.

  • PDF

An Analytical Framework for Imperfect DS-CDMA Closed-Loop Power Control over Flat Fading

  • Choe, Sang-Ho
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.810-813
    • /
    • 2005
  • This letter presents an analytical framework for a performance analysis of the imperfect direct-sequence code division multiple access (DS-CDMA) closed-loop power control (CLPC) loop with loop delay, channel estimation error, and power control command bit error as the parameters under a Rayleigh flat fading environment. The proposed model is verified through a comparison between analytical results and simulation ones.

  • PDF

Optimal Design of Robust Quantitative Feedback Controllers Using Linear Programming and Genetic Algorithms

  • Bokharaie, Vaheed S.;Khaki-Sedigh, Ali
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.428-432
    • /
    • 2003
  • Quantitative Feedback Theory (QFT) is one of most effective methods of robust controller design and can be considered as a suitable method for systems with parametric uncertainties. Particularly it allows us to obtain controllers less conservative than other methods like $H_{\infty}$ and ${\mu}$-synthesis. In QFT method, we transform all the uncertainties and desired specifications to some boundaries in Nichols chart and then we have to find the nominal loop transfer function such that satisfies the boundaries and has the minimum high frequency gain. The major drawback of the QFT method is that there is no effective and useful method for finding this nominal loop transfer function. The usual approach to this problem involves loop-shaping in the Nichols chart by manipulating the poles and zeros of the nominal loop transfer function. This process now aided by recently developed computer aided design tools proceeds by trial and error and its success often depends heavily on the experience of the loop-shaper. Thus for the novice and First time QFT user, there is a genuine need for an automatic loop-shaping tool to generate a first-cut solution. In this paper, we approach the automatic QFT loop-shaping problem by using an algorithm involving Linear Programming (LP) techniques and Genetic Algorithm (GA).

  • PDF

Optimization of the Shape of Loop-pipe in a Reciprocating Compressor Using Genetic Algorithm (유전자 알고리듬을 이용한 왕복동식 압축기 루프 파이프 형상의 최적화)

  • Lee, Yun-Gon;Jung, Byung-Kyoo;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.4
    • /
    • pp.398-405
    • /
    • 2016
  • A shape of loop-pipe in a compressor affects the vibration of compressor. In this paper, optimal design of shape of loop-pipe to decrease the stress was carried out. Body and shell were assumed to be rigid, while loop-pipe is considered to be flexible. The finite element model was derived and programmed. Genetic algorithm was used for optimization. Locations of 18 point in loop-pipe were considered as shape variables, while the shapes of loop-pipe were interpolated as polynomials or ellipses. Maximum stress of loop-pipe was used as a fitness function for optimization. The spatial constraints and acceleration response of shell were also considered in optimization. The maximum stress and acceleration could be reduced by 79 % and 49 % respectively.