• Title/Summary/Keyword: For-loop

Search Result 7,172, Processing Time 0.034 seconds

A Study on the Measurement and Determination of External Loop Impedance on TN-C-S System (TN-C-S 접지계통에서 외부 루프 임피던스의 실측 및 기준값 설정에 관한 연구)

  • Yi, Geon-Ho;Jung, Jin-Soo;Moon, Hyun-Wook;Kim, Sun-Gu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1163-1168
    • /
    • 2013
  • The maximum allowable value of loop impedance($Z_s$) to secure the operation of overcurrent protective devices and the safety for indirect contact is a very important in TN-C-S system. The loop impedance is divided into inner loop impedance which consumer can adjust and external loop impedance($Z_e$) which only electric operator can adjust. Thus, an external loop impedance which limits to less than a certain value is a very important factor for human body protection against electric shock in TN-C-S system. The concept of loop impedance($Z_s$) is recently introduced to the domestic, the study about external loop impedance is yet insufficient. However, the study about the reference impedance as specified by the IEC 60725 standard to improve the quality and reliability of the power supply is being made. In this paper, reference value of external loop impedance($Z_e$) to meet domestic environment will be proposed by the nationwide measurement and statistical analysis.

Phase Control Loop Design based on Second Order PLL Loop Filter for Solid Type High Q-factor Resonant Gyroscope (고체형 정밀 공진 자이로스코프를 위한 이차 PLL 루프필터 기반 위상제어루프 설계)

  • Park, Sang-Jun;Yong, Ki-Ryeok;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.546-554
    • /
    • 2012
  • This paper suggests a design method of an improved phase control loop for tracking resonant frequency of solid type precision resonant gyroscope. In general, a low cost MEMS gyroscope adapts the automatic gain control loops by taking a velocity feedback configuration. This control technique for controlling the resonance amplitude shows a stable performance. But in terms of resonant frequency tracking, this technique shows an unreliable performance due to phase errors because the AGC method cannot provide an active phase control capability. For the resonance control loop design of a solid type precision resonant gyroscope, this paper presents a phase domain control loop based on linear PLL (Phase Locked Loop). In particular, phase control loop is exploited using a higher order PLL loop filter by extending the first order active PI (Proportion-Integral) filter. For the verification of the proposed loop design, a hemispherical resonant gyroscope is considered. Numerical simulation result demonstrates that the control loop shows a robust performance against initial resonant frequency gap between resonator and voltage control oscillator. Also it is verified that the designed loop achieves a stable oscillation even under the initial frequency gap condition of about 25 Hz, which amounts to about 1% of the natural frequency of a conventional resonant gyroscope.

All-optical gain control in erbium-doped fiber amplifier using a fiber grating (광섬유격자를 이용한 Erbium 첨가 광섬유 증폭기의 광학적 이득제어)

  • 박희갑
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.58-62
    • /
    • 1997
  • A new, simple lasing loop configuration employing a fiber grating was proposed and demonstrated for all-optical gain control of erbium-doped fiber amplifier. The lasing loop was designed such that the fiber grating acts as a notch filter to cutoff the lasing light as well as selects the lasing wavelength. The operating gain was clamped to the same level as the loop loss and it could be varied with a tunable directional coupler in the loop. It is believed that this type of gain-controlled erbiumdoped fiber amplifier can have several advantages when used in wavelength-division-multiplexed transmission systems.

  • PDF

Design of Advanced Multi-loop PI Controller for Multi-delay Processes (다중 시간지연 공정을 위한 개선된 다중루프 PI 제어기 설계)

  • Vu, Truong Nguyen Luan;Lee, Moon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.77-82
    • /
    • 2010
  • An analytical method for robust design of the multi-loop proportional-integral (PI) controller is proposed for various types of multi-delay processes. On the basis of the direct synthesis and generalized IMC-PID approach, the analytical tuning rules of the multi-loop PI controller are firstly derived for achieving the desired closed-loop response, and the structured singular value synthesis is then utilized for the tradeoffs between the robust stability and performance by adjusting only one design parameter (i.e., the closed-loop time constant). To verify the superiority of the proposed method, the simulation studies have been conducted on a wide variety of multivariable processes. The multi-loop PI controller designed by the proposed method shows a fast, well-balanced and robust response with the minimum integral absolute error (IAE) in compared with other renowned methods.

A Strategic Considerations for Optimization of Physical Distribution in Container Terminal (컨테이너 터미널의 물류체계의 최적화를 위한 전략적 고찰)

  • Yeo, G.T.;Lee, C.Y.
    • Journal of Korean Port Research
    • /
    • v.11 no.2
    • /
    • pp.145-156
    • /
    • 1997
  • The purpose in this study is development of model for the Container Terminals of Pusan Port, First of all, Quantitive and Qualititve factors are characterized which effects on Physical Distribution System in Container Terminals. The System Dynamics method is used to develope the model by using these factor. This model is able to present the timinig of investment in Container Terminals of Pusan Port. Six models are showed by change of parameters in System Dynamics, in this paper. In the model, Five feedback loop were found. Loop 1 : Number of Liners$\rightarrow$Number of Congested ships$\rightarrow$Port's Charges$\rightarrow$Export & Import Cargo Volumes$\rightarrow$Number of Liners$\rightarrow$The will to investment of government$\rightarrow$Length of berth→Number of Liners. Negative loop was acquired. Loop 2 : Port's Charge$\rightarrow$Economic of Port$\rightarrow$The will to Private management$\rightarrow$Efficiency for Port's Operation$\rightarrow$Port's Charges. Positive loop was acquired. Loop 3 : Number of Congested ships$\rightarrow$Planning for future development$\rightarrow$Information Service$\rightarrow$Support service for port's user$\rightarrow$Number of Congested ships. Negative loop was acquired. Loop 4 : Number of Congested ships$\rightarrow$Planning for future development$\rightarrow$Extent of stacking area$\rightarrow$Number of handling equipmint$\rightarrow$Number of Congested ships. Negative loop was acquired. Loop 5 : Export & Import Cargo Volumes$\rightarrow$Number of Liners$\rightarrow$Econmic of Port$\rightarrow$Support service for port's user$\rightarrow$Export & Import Cargo Volumes. Positive loop was acquired. System's level variables were selected as followings ; Number of Liners, Number of Congested ships, Export & Import Carge Volumes, Length of berth, and Port's Charges. As result of simmulation of model, fluctuation of respective year was found in level variables. This fluctuation can be used properly to present timing of investment.

  • PDF

AN LMI APPROACH TO AUTOMATIC LOOP-SHAPING OF QFT CONTROLLERS

  • Bokharaie, Vaheed S.;Khaki-Sedigh, Ali
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.433-437
    • /
    • 2003
  • Quantitative Feedback Theory (QFT) is one of effective methods of robust controller design. In QFT design we can considers the phase information of the perturbed plant so it is less conservative than $H_{\infty}$ and ${\mu}$-synthesis methods and as be shown, it is more transparent than the sensitivity reduction methods mentioned . In this paper we want to overcome the major drawback of QFT method which is lack of an automatic method for loop-shaping step of the method so we focus on the following problem: Given a nominal plant and QFT bounds, synthesize a controller that achieves closed-loop stability and satisfies the QFT boundaries. The usual approach to this problem involves loop-shaping in the frequency domain by manipulating the poles and zeros of the nominal loop transfer function. This process now aided by recently developed computer aided design tools proceeds by trial and error and its success often depends heavily on the experience of the loop-shaper. Thus for the novice and First time QFT user, there is a genuine need for an automatic loop-shaping tool to generate a first-cut solution. Clearly such an automatic process must involve some sort of optimization, and while recent results on convex optimization have found fruitful applications in other areas of control theory we have tried to use LMI theory for automating the loop-shaping step of QFT design.

  • PDF

A Study on Standardization Method Establishment of Multi Water-Loop System using Multi Water Resources (다중수원을 활용한 멀티워터 루프시스템의 표준화방안 구축에 관한 연구)

  • Lee, Hyundong;Lee, Joonhyung;Kwak, Pilljae
    • KCID journal
    • /
    • v.21 no.1
    • /
    • pp.109-117
    • /
    • 2014
  • Multi water-loop system is the efficient customer centered facilities of water supply by utilizing the multi water resources. Multi water-loop system is divided into various types. The system is classified potable and non-potable type. Mostly, the potable type utilizes surface water and ground water. However, the non-potable type utilize the multi water resources, such as rain water, sea water, reclaimed water, etc. Selective intake is possible when characteristics of region, physiographic condition and purpose of use are considered. For instance, downtown type, new-city type, agriculture type, island type are available. For development and application of these multi water-loop system, standardization is needed. For standardization, several methods are given; design principles, selection and composition method of multi water-loop system structure, BIM/GIS application method, safety inspection method. Consequently, a road map of design standardization method can be established. In this road map, there are three parts for the standardization of multi water-loop system. Three parts are the considerations, base material and ways of standardization. Design standardization become close when this road map followed by someone who plan the multi water-loop system. In this way, loop system's development is more efficient and economic. In hereafter research, each type's characteristic will be analysed and standardization methods can be established.

  • PDF

Extended Loop Antenna for the Mobile Handset (휴대 단말기용 연장 루프안테나)

  • Son, Taeho;Ryu, Hwang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.2
    • /
    • pp.30-37
    • /
    • 2013
  • An extended loop antenna, to be continued BLA(Branch Loop Antenna) in the previous volume, for the mobile handset is designed in this paper. It's introduced an ELA(Extended Loop Antenna) that is added extended loops to rectangular loop, and verified antenna performances for applying to mobile handset. Extended loops are located upside, left and right side of rectangular loop, and low resonance is obtained by the length of line. Multiple resonances are established by the extended loops, and obtained the desired service bands by the connection points and lengths. By the implementation and measurement for the multiband ELA, it's showed -3.0~-1.46dBi average gains with 50.15~71.41% efficiencies at CDMA/GSM frequency band, and -8.28~-1.7dBi average gains with 14.87~67.68% efficiencies at DCS/USPCS/WCDMA frequency band.

Performance Evaluation of Vector Tracking Loop Based Receiver for GPS Anti-Jamming Environment (GPS 교란 환경에서 벡터추적루프 기반 수신기 성능평가)

  • Song, Jong-Hwa;Im, Sung-Hyuck;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.152-157
    • /
    • 2013
  • In this paper, we represent the implementation and performance analysis of vector tracking loop based GPS receiver for jamming environment. The vector tracking loop navigation performance is compared by simulation with conventional tracking loop. The simulation results shows that vector tracking loop is more robust than conventional tracking loop in jamming environment. The vector tracking loop can gain 2dB in jamming performance capability over a conventional GPS receiver. Also, Anti-jamming performance of INS Doppler aiding and deep integration method are compared.

A New Phase-Locked Loop System with the Controllable Output Phase and Lock-up Time

  • Vibunjarone, Vichupong;Prempraneerach, Yothin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1836-1840
    • /
    • 2003
  • This paper, we propose a new phase-locked loop (PLL) system with the controllable output phase, independent from the output frequency, and lock-up time. This PLL system has a dual control loop is described, the inner loop greatly improved VCO characteristic such as faster speed response as well as higher operation bandwidth, to minimize the effect of the VCO noise and the power supply variation and also get better linearity of VCO output. The main loop is the heart of this PLL which greatly improved the output frequency instability due to the external high frequency noise coupling to the input reference frequency also the main loop can control the output phase, independent from the output frequency, and reduce the lock-up time of the step frequency response. The experimental results confirm the validity of the proposed strategy.

  • PDF