• Title/Summary/Keyword: Foot movement

Search Result 267, Processing Time 0.028 seconds

Fitts' Law for Angular Foot Movement in the Foot Tapping Task

  • Park, Jae-Eun;Myung, Ro-Hae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.5
    • /
    • pp.647-655
    • /
    • 2012
  • Objective: The purpose of this study was to confirm difference between angular foot movement time and existing foot Fitts' law predicting times, and to develop the angular foot Fitts' law in the foot tapping task. Background: Existing studies of foot Fitts' law focused on horizontal movement to predict the movement time. However, when driving a car, humans move their foot from the accelerator to the brake with a fixed heel. Therefore, we examined the experiment to measure angular foot movement time in reciprocal foot tapping task and compared to conventional foot Fitts' law predicting time. And, we developed the angular foot Fitts' law. Method: In this study, we compared the angular foot movement time in foot tapping task and the predicted time of four conventional linear foot Fitts' law models - Drury's foot Fitts' law, Drury's ballistic, Hoffmann's ballistic, Hoffmann's visually-controlled. 11 subjects participated in this experiment to get a movement time and three target degrees of 20, 40, and 60 were used. And, conventional models were calculated for the prediction time. To analyze the movement time, linear and arc distance between targets were used for variables of model. Finally, the angular foot Fitts' law was developed from experimental data. Results: The average movement times for each experiment were 412.2ms, 474.9ms, and 526.6ms for the 89mm, 172mm, and 253mm linear distance conditions. The results also showed significant differences in performance time between different angle level. However, all of conventional linear foot Fitts' laws ranged 135.6ms to 401.2ms. On the other hand, the angular foot Fitts' law predicted the angular movement time well. Conclusion: Conventional linear foot Fitts' laws were underestimated and have a limitation to predict the foot movement time in the real task related angular foot movement. Application: This study is useful when considering the human behavior of angular foot movement such as driving or foot input device.

A Study of In-sole Plantar Pressure Distribution in Functional Tennis Shoes (기능성 전문테니스화의 족저압력분포 분석)

  • Lee, J.S.;Kim, Y.J.;Park, S.B.
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.99-118
    • /
    • 2004
  • The aim of this study is to evaluate tennis shoes's plantar pressure distribution in tennis prayers and to determine the influence of the shoe on various tennis movements. When investigating the biomechanics of movement in tennis, one of the first things to do is to understand the movement patterns of the sport, specifically how these patterns relate to different tennis shoes. Once these patterns are understood, footwear company can design tennis shoes that match the individual needs of tennis players. Plantar pressure measurement is widely employed to study foot function, the mechanical pathogenesis for foot disease and as a diagnostic and outcome measurement tool for many performance. Measurements were taken of plantar pressure distribution across the foot and using F-Scan(Tekscan Inc.) systems respectively. The F-Scan system for dynamic in-shoe foot pressure measurements has enabled us to assess quantitatively the efficacy of different types of footwear in reducing foot pressures. The Tekscan F-Scan system consists of a flexible, 0.18mm thick sole-shape having 1260 pressure sensors, the sensor insole was trimmed to fit the subjects' right, left shoes. For this study 4 university male, high level tennis players were instructed to hit alternated forehand stroke, backhand stroke, forehand volley, backhand volley, smash, service movement in 4 different tennis shoes. 1. When impact in tennis movement, peak pressure distribution of landing foot displayed D>C>B>A, A displayed the best low pressure distribution. A style's tennis shoes will suggest prayer with high impact. If prayer with high impact feeling during pray in tennis wear A style, it will decrease injury, will have performance improvement. 2. When impact in tennis movement, plantar pattern of pressure distribution in landing foot displayed B>A>C>D in stability performance. During tennis, prayer want to stability movement suggest B style tennis shoes when tennis movement impact keep stability of human body. B style tennis shoes give performance improvement 3. When impact in tennis movement, plantar pattern of center of force(C.O.F.)trajectory in landing foot analyzed this : 1) When stroke movement and volley movement in tennis, prayer better to rearfoot movement. 2) when service movement, prayer midfoot strike movement. 3) when smash movement, prayer have forefoot strike movement.

Foot Movement Tracking System using Ultrasonic Sensors and Inertial Sensors (초음파센서와 관성센서를 이용한 발의 움직임 추적 시스템)

  • Boo, Jang-Hun;Park, Sang-Kyeong;Suh, Young-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1117-1124
    • /
    • 2010
  • This paper presents a foot movement tracking system using ultrasonic sensors and inertial sensors, where the position and velocity of foot are computed using inertial sensors and ultrasonic sensors mounted on a shoe. A foot movement can be estimated using an inertial navigation algorithm only; however, the error tends to increase due to biases of gyroscopes and accelerometers. To reduce the error, a localization system using ultrasonic sensors is additionally used. In the localization system using ultrasonic sensors, the position is continuously calculated in the absolute coordinate. An indirect Kalman filter is used to combine inertial sensors and ultrasonic sensors. Through experiments, it is shown that the proposed system can track a foot movement.

The Effect of Ankle-Foot Orthosis and Trunk Orthosis on Movement patterns used in a Supine to Stand Rising task (누운자세에서 똑바로 일어서기 운동형태에서 족관절보조기와 체간보조기의 영향)

  • kwon mi-ji
    • The Journal of Korean Physical Therapy
    • /
    • v.16 no.2
    • /
    • pp.22-32
    • /
    • 2004
  • The purpose of this study was to examine the effect of ankle-foot orthosis and lumbosacral orthosis on movement patterns used to rise from the supine position to erect stance. Thirty-two healthy adults participated. Subjects were videotaped while rising from a supine position on a floor mat. Each subject performed 10 trials each of three condition;general condition, right ankle-foot orthosis, lumbosacral orthosis. subjects rose most commonly using a symmetrical push pattern of the upper extremities, a symmetrical squat pattern in the lower extremities, a symmetrical in the trunk under each of three conditions. Changes in the incidence of movement patterns occurred in lower extremities of the ankle-foot orthosis and lumbosacral orthosis condition and trunk of the ankle-foot orthosis condition. From a dynamic pattern theory perspective, ankle motion is a control variable for the supine position to erect standing movement.

  • PDF

Correctional Function of Custom Foot Orthotics for Foot Diseases related to Excessive Pronation during Gait (보행시 과도한 회내와 관련된 발질환을 위한 맞춤형 발보조기의 교정적 기능)

  • Kim, Seung-Jae
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.65-79
    • /
    • 2006
  • The purpose of this study was firstly to investigate correctional function of custom semi-rigid foot orthotics for excessively pronated people during gait by observing comfort, navicular movement and leg muscles' activity according to short-term and mid-term wearing duration and secondly to understand positive and/or negative point of view of a recently proposed paradigm related to foot orthotics more profoundly. Sixteen subjects who showed excessive pronation at navicular drop test were recruited for this study. Custom semi-rigid foot orthotics were made fitting for foot characteristics of the subjects by podiatry division of Otto Bock Korea company. While wearing the foot orthotics for two months, comfort of wearing were questioned and vertical navicular movement and electromyography of leg muscles during gait were measured at the condition of both immediately after and 2 months after including a control condition, respectively. The subjects were required to walk on a treadmill at the speed of 1.5m/s and four digital video camera filmed the movement of navicular process at the speed of 60 frames/s. In conclusion, in excessively pronated group continuous increase of comfort from short-term to mid-term wearing of custom foot orthotics is assumed to be closely related with short-term and mid term correctional action, of which are consisted the decrease of the range of navicular drop and navicular raisins- the faster timing of minimum navicular position occurring, and the decrease of leg muscles' activities. This conclusion could lead to positively accept new paradigm related to foot orthotics suggested by Nigg and the author suggest that in the future study the variable which could observe navicular movement would be one of major variables to study preferred path of skeleton in the paradigm.

Visual Feedback and Human Performance in the Foot Mouse Control

  • Hong, Seung-Kweon;Kim, Seon-Soo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.6
    • /
    • pp.725-731
    • /
    • 2012
  • Objective: The aim of this study is to investigate visual feedback effects and human performance in the foot mouse control. Background: Generally, computer mouse tasks are controlled by visual feedback. In order to understand the characteristics of a foot mouse control, it is important to investigate the patterns of visual feedback involved in foot-mouse control tasks. Human performance of foot mouse control is also an important factor to understand the foot mouse control. Method: Three types of mouse control were determined to investigate visual feedback effects and human performance in the foot mouse control. Visual feedback effects in the foot mouse control were compared with those of a typical hand mouse. The cursor movement speed and mental workload were measured in the three types of tasks and two types of mouses. Results: Mouse control tasks with an element of homing-in to the target were more quickly performed by the hand mouse than the foot mouse. Mental workload was also higher in the foot mouse than the hand mouse. However, in the steering movement, human performance of the foot mouse control was not lower than that of the hand mouse control. Visual feedback in the foot mouse control was less required than in the hand mouse control. Conclusion: The foot mouse was not efficient in the most mouse control tasks, compared to the hand mouse. However, the foot mouse was efficient in the steering movement, moving a cursor within a path with lateral constraints. Application: The results of this study might help to develop the foot mouse.

The Effects of Shoe Type on Ground Reaction Force

  • Yi, Kyung-Ok
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.9-16
    • /
    • 2011
  • The purpose of this study is to analyze the effects of both various shoe types and bare feet on ground reaction force while walking. Ten first-year female university students were selected. A force platform(Kistler, Germany) was used to measure ground reaction force. Six types of shoe were tested: flip flops, canvas shoes, running shoes, elevated forefoot walking shoes, elevated midfoot walking shoes, and five-toed shoes. The control group was barefooted. Only vertical passive/active ground reaction force variables were analyzed. The statistical analysis was carried out using the SAS 9.1.2 package, specifically ANOVA, and Tukey for the post hoc. The five-toed shoe had the highest maximum passive force value; while the running shoe had the lowest. The first active loading rate for running shoes was the highest; meanwhile, bare feet, the five-toed shoe, and the elevated fore foot walking shoe was the lowest. Although barefoot movement or movement in five toed shoes increases impact, it also allows for full movement of the foot. This in turn allows the foot arch to work properly, fully flexing along three arches(transverse, lateral, medial), facilitating braking force and initiating forward movement as the tendons, ligaments, and muscles of the arch flex back into shape. In contrast movement in padded shoes have a tendency to pound their feet into the ground. This pounding action can result in greater foot instability, which would account for the higher loading rates for the first active peak for padded shoes.

Analysis of Plantar Foot Pressure in Skilled and Unskilled Player's during a Free Throw in Basketball (농구 자유투 동작 시 숙련자 및 미숙련자의 족저압력 분석)

  • Kim, Chang-Hyun;Lee, Joong-Sook;Jang, Young-Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.2
    • /
    • pp.183-191
    • /
    • 2012
  • The objective of this study was to evaluate the plantar foot pressure of skilled and unskilled players during a free throw. The experiment performed here in measured the movement route of the mean foot pressure, maximum foot pressure, and center of pressure in four event zones (ready, maximum knee flexion, release event, and maximum knee extension) for both groups while they were wearing the plantar foot pressure measurement equipment under identical conditions. The major findings are as follows. When getting ready (RD) during a free throw, the skilled player group had higher mean and maximum foot pressures, although neither variable showed significant differences statistically. For the maximum knee flexion (MF) during a free throw, the skilled player group had higher mean and maximum foot pressures, but only the mean foot pressure significantly differed statistically. For the release event (RE) during a free throw, the unskilled player group had higher mean and maximum foot pressures, but only the mean foot pressure significantly differed statistically. During the maximum knee extension (ME) of a free throw, the unskilled player group had a higher mean foot pressure, and the skilled player group had a higher maximum foot pressure. No significant correlation was found between the two groups. For the skilled player group, movement towards the center of pressure showed a stable form that moved from the rear to the front and from side to side during a free throw. For the unskilled player group, movement towards the center of pressure was unstable, which made it impossible to move from the rear to the front and from left to right.

Relationship between Movements of the Foot and Electromyographic Activities of Lower Leg Muscles in Young Women (젊은 여성의 발동작과 몇몇 하퇴근 근전도와의 관계)

  • Choe, Myoung-Ae;Shin, Dong-Hoon
    • The Korean Journal of Physiology
    • /
    • v.18 no.1
    • /
    • pp.81-96
    • /
    • 1984
  • As the crippled persons work mostly in a sitting position and would be engaged in a foot-pressing job, it is necessary to assess their degree of participation of important muscles in various modes of foot activities. In this regard, it deems to be urgent to establish the reference standards for healthy persons. The present study has been undertaken to determine the degree of participation of the M. tibialis anterior, M. gastrocnemius and M. soleus in heel pressing, foot-flat pressing and forefoot pressing motion under varying forces, and in order to compare the electrical activities of three muscles with each other, and to analyse the time sequence between force and appearance or disappearance of EMG recording. Sixty-three healthy young women ranging from age of 18 to 23 were examined. The results obtained were as follows: 1. Participation of three muscles in foot movement under varying forces: A) Both gastrocnemius muscles or left soleus muscle did not contribute to heel pressing motion. Activity of both tibialis anterior muscles was the greatest among three muscles at heel pressing motion and the degree of their activities was proportional to force. B) Activities of left tibialis anterior muscle and both gastrocnemius muscles were negligible under 3 kg force at foot-flat pressing movement. Left gastrocnemius muscle did not contribute to foot-flat pressing under 6 or 9 kg force. Although activities of both soleus muscles and both tibialis anterior muscles were small, the degree of their activities increased with force at foot-flat pressing movement. C) Activities of both tibialis anterior muscles were negligible under 3 kg force at forefoot pressing motion. Activity of both soleus muscles was the greatest among 3 muscles and the degree of their activities increased with force at forefoot pressing motion. Both tibialis anterior muscles participated in forefoot pressing motion with severe exertion. 2. Electrical activities by foot movement under varying forces : A) Electrical activities were prominent in both tibialis anterior muscles and the level of their activities was linear with force at heel pressing motion. The degree of participation of both soleus muscles was small at heel pressing motion. B) Electrical activity of tibialis anterior muscle was the greatest among 3 muscles at foot-flat pressing movement and was followed by that of soleus muscle. Level of electrical activities increased with force in left soleus muscle and right tibialis anterior muscle at foot-flat pressing movement. C) Electrical activity of both soleua muscles was the greatest among 3 muscles at forefoot pressing movement and that of tibialis anterior muscle was next to soleus muscle. Level of electrical activities was proportional to force in left tibialis anterior muscle, right gastrocnemius muscle and both soleus muscles at forefoot pressing movement. 3. Time between starting signal and initiation of contraction of heel pressing and forefoot pressing motion in 3 muscles was longer than that of foot-flat pressing movement. Time of relaxation in 3 muscles was longer than that of contraction under varying forces. EMG recording appeared before initiation of contraction in both tibialis anterior muscles at heel pressing motion and in both soleus muscles at forefoot pressing movement under varying forces. Time of initiation of contraction was similar in both sides of tibialis anterior muscles under varying forces and time of onset of contraction at foot-flat pressing motion was the shortest. 4. Forefoot pressing movement would be encouraged in paralysis of tibialis anterior muscle, while heel pressing motion would be encouraged in paralysis of triceps surae muscle.

  • PDF

Kinematic Analysis of Samdan Didimsae Movement for Jajinmori Jangdan (자진모리장단에 따른 한국무용3단 디딤새 동작에 관한 운동학적 분석)

  • Ahn, Wan-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.203-212
    • /
    • 2008
  • The purpose of this study is to propose appropriate model for 3 staged Didimsae movement to Jajinmori rhythm and to provide information for ideal foot step movements. For the locational change of body center, the height of body center is lowered at the moment of forward step and during forward intersection of the feet, forward direction linear motion is converted to vertical motion to maintain stability. Speed change of body center reduces flow of body on step forward moment and controls rapid forward movement for stabled movement and position when preventing fast forward horizontal direction movement of centroid speed while knee joint and foot joint are vertically risen for heel bone contacts the ground. For angle changes of joints, in order to prevent hyperextension of lower leg, hip joint is extended and knee joint is curved to secure stability of movement for smooth curves and extension. When centroid of foot joint is moved from top of the feet to whole foot sole and when left foot makes dorsal curve, stabled movement is accomplished.