• Title/Summary/Keyword: Foot mechanism

Search Result 133, Processing Time 0.024 seconds

Effects of Acupuncture applied to Food Samli on the Rat Model of Knee Arthritic Pain (족삼리(足三里) 전침(電鍼)이 백서(白鼠)의 슬관절염(膝關節炎) 통증(痛症)에 미치는 영향(影響))

  • Park, Sung-Ik;Koo, Sung-Tae;Hwang, Jae-Ho;Shin, Jong-Keun;Sohn, In-Chul;Kim, Kyung-Sik
    • Korean Journal of Acupuncture
    • /
    • v.21 no.1
    • /
    • pp.113-127
    • /
    • 2004
  • Objectives : The usage of acupuncture has gained popularity as an alternative method of treatment for certain chronic pain conditions. However, the efficacy of acupuncture in various diseases has not been fully established and the underlying mechanism is not clearly understood. In the present study, the effect of electroacupuncture (EA) applied to foot samli$(ST_{36})$ on the carrageenan-induced knee arthritic pain was examined. Methods : A common source of persistent pain in humans is the knee arthritis. Knee arthritis was induced by injection of 2 % carrageenan $50\;{\mu}l$ into the knee joint cavity. When rats developed pain behaviors, EA was applied for 30 min. under enflurane anesthesia with repeated train stimuli at the intensity of 10X of muscle twitch threshold. The weight bearing force of the hind limb was measured for an indicator of pain level after each manipulation. Results : The average weight borne by the hind limb during normal gait was 55% of total body weight, which was reduced to less than 10% after knee arthritis. EA improved the weight bearing of the arthritic hind limb significantly for the duration of 4 hr. EA applied to $ST_{36}$ point produced a significant improvement of stepping force of the arthritic foot lasting for at least 4 h. However, $GB_{31}$ point did not produce any significant increase of weight bearing force. The analgesic effect was specific to the acupuncture point since the analgesic effect on the knee arthritis model could not be mimicked by EA applied to a nearby point, $GB_{31}$. The relations between EA-induced analgesia and endogenous nitric oxide(NO) and inducible NO synthase(iNOS)/neuronal NOS was also examined. Results were turned out that both NO production and nNOS/iNOS protein expression which is increased by arthritis were suppressed by EA stimulation applied to $ST_{36}$ point. Conclusions : The data suggest 1) that EA produces a potent analgesic effect on the rat model of chronic knee arthritis pain in a point specific manner and 2) that EA-induced analgesia modulate endogenous NO through the suppression of nNOS/iNOS protein expression.

  • PDF

Inscribed Transceiver Optical System Design for Laser Radar with Zoom-type Expander (줌렌즈 광속확대기를 적용한 레이저 레이더용 송수광 내접형 광학계 설계)

  • Koh, Hae Seog;Ok, Chang Min;Hong, Jin Sug;Lee, Chang Jae;Park, Chan Geun;Kim, Hyun Kyu
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.1
    • /
    • pp.23-28
    • /
    • 2013
  • In this paper, an optical system was designed for 3D imaging laser radar with optical scanner. In order to make it easy to scan, the system was designed to inscribe the transmitting objective lens in the receiving lens. In transmitting optics, the beam expander was designed to have a zoom mechanism so that the transmitted beam size would be 4.8 m or 6.8 m at 1 km distance, when the laser source's numerical aperture value is between 0.13 and 0.22. The beam diameter at the target 1 km away was confirmed by design program. The receiving optics for the returning beam from the target was designed for the $16{\times}16$ array detector with $100{\mu}m$ pixel width. The spot diameter in every pixel was designed and verified to be less than $55{\mu}m$. The receiving optics' obscuration ratio by transmitting optics was 11%.

ZPM Compensation and Impedance Control for Improving Walking Stability of Biped Robots (2족 보행 로봇의 보행 안정성 향상을 위한 ZPM보상 및 임피던스 제어)

  • Jeong, Ho-Am;Park, Jong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.1007-1015
    • /
    • 2000
  • This paper proposes an adaptive trajectory generation strategy of using on-line ZMP information and an impedance control method for biped robots. Since robots experience various disturbances during their locomotion, their walking mechanism should have the robustness against those disturbances, which requires an on-line adaptation capability. In this context, an on-line trajectory planner is proposed to compensate the required moment for recovering stability. The ZMP equation and sensed ZMP information are used in this trajectory generation strategy. In order to control a biped robot to be able to walk stably, its controller should guarantee stable footing at the moment of feet contacts with the ground as well as maintaining good trajectory tracking performance. Otherwise, the stability of robot will be significantly compromised. To reduce the magnitude of an impact and guarantee a stable footing when a foot contacts with the ground, this paper. proposes to increase the damping of the leg drastically and to modify the reference trajectory of the leg. In the proposed control scheme, the constrained leg is controlled by impedance control using the impedance model with respect to the base link. Computer simulations performed with a 3-dof environment model that consists of combination of a nonlinear and linear compliant contact model show that the proposed controller performs well and that it has robustness against unknown uneven surface. Moreover, the biped robot with the proposed trajectory generator can walk even when it is pushed with a certain amount of external force.

Norepinephrine-Induced Rekindling of Mechanical Allodynia in Sympathectomized Neuropathic Rat (교감신경절제 받은 신경병증성 통증 쥐 모델에서 Norepinephrine에 의해 유도된 기계적 이질통의 Rekindling의 기전)

  • Moon, Dong-Eon
    • The Korean Journal of Pain
    • /
    • v.9 no.2
    • /
    • pp.318-325
    • /
    • 1996
  • Background: Sympathectomy relieves pain in sympathectically maintained pain, and subcutaneous injection of norepinephrine(NE) can rekindle mechanical allodynia. However, the mechanism of rekindling is not clear. The purpose of this study is to investigate which subtype of $\alpha$-adrenoceptor is involved in NE-induced rekindling of mechanical allodynia in sympathectomized neuropathic rats. Methods: Neuropathic injury was produced by tightly ligating the left L5 and L6 spinal nerves of 36 male Sprague-Dawley rats and bilateral lumbar sympathectomy was done at two weeks postoperatively. Starting at 7 days after sympathectomy, rekindling of mechanical allodynia was induced by NE and clonidine injected into the left paw, which was reversed by pretreatment of phentolamine and idazoxan. Mechanical allocynia was quantified by measuring the frequency of foot lifts to two von Frey filaments applied to the paw. Results: All tested rats displayed well-developed signs of mechanical allodynia at the left paw that were abolished by a bilateral lumbar sympathectomy. Subcutaneous (s.c.) injection of NE (0.05 ${\mu}g$) into the affected paw of sympathectomized neuropathic rats rekindled previous mechanical allodynia. These effects could be mimicked by an ${\alpha}_2$-receptor agonist clonidine, but not by an ${\alpha}_1$-receptor agonist phenylephrine. The NE-induced rekindling of mechanical allodynia was significantly reduced by prior s.c. injection of a mixed $\alpha$-receptor antagonist phentolamine (20${\mu}g$) and ${\alpha}_2$-receptor antagonist idazoxan(20${\mu}g$), but not by a ${\alpha}_1$-receptor antagonist terazosin (20${\mu}g$). The pretreatment of idazoxan produced dose-related inhibition of NE-induced rekindling of mechanical allodynia. The rekindling induced by ${\alpha}_2$-receptor agonist clonidine (5${\mu}g$) was also reversed by prior s.c. injection of ${\alpha}_2$-receptor antagonist idazoxan (20${\mu}g$). Conclusion: Subcutaneous injection of NE into the paw of sympathectomized neuropathic rats rekindles mechanical allodynia, which is reversed by an ${\alpha}_2$-, but not by an ${\alpha}_1$-receptor antagonist. Therefore, rekindling of mechanical allodynia in sympathectomized neuropathic rats is mediated by ${\alpha}_2$-adrenoceptor.

  • PDF

Molecular Biologic Study on the Role of Glutamate in Spinal Sensitization (척수통증과민반응에서 Glutamate의 역할에 대한 분자생물학적 연구)

  • Kim, Hae-Kyu;Jung, Jin-Sup;Baik, Seong-Wan
    • The Korean Journal of Pain
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • Background: Subcutaneous injection of 5% formalin into the hind paw of the rat produces a biphasic nociceptive response. The second phase depends on changes in the dorsal horn cell function that occur shortly after an initial C-fiber discharge, spinal sensitization, or windup phenomenon. This study was performed to investigate the role of glutamate during spinal sensitization. Methods: Sprague-Dawley rats weighing 200 to 250 g were used for this study. Under light anesthesia (0.5% isoflurane) the rats were segregated in a specially designed cage and $50{\mu}l$ 0.5% formalin was injected subcutaneously in the foot dorsum of right hindlimb. Forty minutes after the formalin injection, the rat was quickly decapitated and spinal cord was removed. The spinal segments at the level of L3 (largest area) was collected and stored in a deep freezer ($-70^{\circ}C$). The mRNA gene expression of N-methyl-D-aspartate receptor (NMDAR) and the metabotropic glutamate receptor subtype 5 (mGluR5) were determined by the polymerase chain reaction. Results: The number of flinches was $19.8{\pm}2.3/min$. at one minute after formalin injection and decreased to zero after then. The second peak appeared at 35 and 40 minutes after formalin injection. The values were $17.8{\pm}2.2$ and $17.2{\pm}3.0/min$. The mRNA gene expressions of NMDAR and mGluR5 were increased by $459.0{\pm}46.8%$ (P < 0.01) and $111.1{\pm}4.8%$ (P > 0.05) respectively at 40 minutes after formalin injection. The increased rate of NMDAR was significantly higher than that of mGluR5 (P < 0.01). Conclusions: From these results it suggested that NMDAR partly contributed to the mechanism of central sensitization after the formalin test but mGluR5 did not.

  • PDF

Design of Knee-Pelvis Joint in the Biped Robot for Shock Reduction and Gravity Compensation (충격 감소 및 중력 보상을 위한 이족보행로봇의 무릎-골반 관절 설계)

  • Kim, Young-Min;Kim, Yong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.136-142
    • /
    • 2015
  • In the paper, a design method of knee and pelvis joint in the biped robot is proposed for shock absorption and gravity compensation. Similarly to the human's body, the knee joints of the biped robot support most body weight and get a shock from the landing motion of the foot on the floor. The torque of joint motor is also increased sharply to keep the balance of the robot. Knee and pelvis joints with the spring are designed to compensate the gravity force and reduce the contact shock of the robot. To verify the efficiency of the proposed design method, we develope a biped robot with the joint mechanism using springs. At first, we experiment with the developed robot on the static motions such as the bent-knee posture both without load and with load on the flat ground, and the balance posture on the incline plane. The current of knee joint is measured to analyze the impact force and energy consumption of the joint motors. Also, we observe the motor current of knee and pelvis joints for the walking motion of the biped robot. The current responses of joint motors show that the proposed method has an effect on shock reduction and gravity compensation, and improve the energy efficiency of walking motions for the biped robot.

Notching Phenomena of Silicon Gate Electrode in Plasma Etching Process (플라즈마 식각공정에서 발생하는 실리콘 게이트 전극의 Notching 현상)

  • Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.20 no.1
    • /
    • pp.99-103
    • /
    • 2009
  • HBr and $O_2$ in $Cl_2$ gas ambient for the high density plasma gate etching has been used to increase the performance of gate electrode in semiconductor devices. When an un-doped amorphous silicon layer was used for a gate electrode material, the notching profile was observed at the outer sidewall foot of the outermost line. This phenomenon can be explained by the electron shading effect: i.e., electrons are captured at the photoresist sidewall while ions pass through the photoresist sidewall and reach the oxide surface at a narrowly spaced pattern during the over etch step. The potential distribution between gate lines deflects the ions trajectory toward the gate sidewall. In this study, an appropriate mechanism was proposed to explain the occurrence of notching in the gate electrode of un-doped amorphous silicon.

Research of Efficacy of Curculiginis Rhizoma aquaous extract on collagen induced arthritis (선모(仙茅) 열수(熱水) 추출물의 Collagen 유발 관절염에 대한 약리 효능 연구)

  • Seo, Bu Il;Roh, Seong Soo;Park, Ji Ha;Park, Chan Ik;Koo, Jin Suk
    • The Korea Journal of Herbology
    • /
    • v.31 no.4
    • /
    • pp.1-10
    • /
    • 2016
  • Objectives: In Korean medicine, Curculiginis Rhizoma was treated for arthritis in remedy. But efficacy of Curculiginis Rhizoma on collagen induced arthritis was not revealed.Methods: Anti inflammatory effect of Curculiginis Rhizoma was researched in vitro with RAW264.7 cell and cell toxicity, levels of proinflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-12) and PGE2 were analyzed by ELISA assay. Inflammatory protein were analyzed by western blotting assay (JNK, ERK, COX-2, TNF-α and IL-1β). In vivo, collagen induced arthritis mice model was used to evaluate anti-inflammation effect through arthritis index, immune cell number and cytokine levels (TNF-α, IL-6 and IL-1β) in serum.Results: ECR(Extract of Curculiginis Rhizoma) has not shown cell toxicity in 200 ㎍/㎖ on RAW264.7 cell. ECR suppressed releases of NO, TNF-α, IL-1β, IL-6, IL-12 and PGE2 on RAW264.7 cell treated with lipopolysacharide (1 ㎍/㎖). And ECR inhibited regulation of TNF-α, IL-1β and IL-6 mRNA, reduced protein release of JNK, ERK, iNOS, COX-2, IL-1β and TNF-α. AI of group treated with ECR 200 ㎎/㎏ and 100 ㎎/㎏ were significantly decreased compared to vihicle arthritis mice, the number of immune cell in foot joint was increased on control mice but those of group treated with ECR 200 ㎎/㎏ and 100 ㎎/㎏ were significantly reduced. This results correspond with contens of cytokines (TNF-α, IL-1β and IL-6) in serum.Conclusions: Curculiginis Rhizoma has anti-inflammation effect on RAW264.7 cell in vitro and collagen induced arthritis in vivo. So it is necessary to research more mechanism for cascade imfact.

A Study of the design method for Interactive squat exercise Instrument (인터렉티브 스쿼트운동기구의 설계방법에 관한 연구)

  • Jeong, Byeong-Ho;Park, Ju-Hoon;Kim, Ji-won
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.2
    • /
    • pp.303-311
    • /
    • 2018
  • Squat exercise is one of the free weight exercises that are recognized as important from a bio-mechanical point of view. It is an important exercise to train lower extremity muscles in daily activities or sports activities and to strengthen trunk and lower body strength. It is effective and accurate to use a variety of assistive devices to calibrate athletic posture with squat exercise supported interactive device. The issues of the structural analysis for design a foot plate for squat exercise is to model the behavior by simplifying the dynamic behavior. In this paper, the authors proposed a exercise system design method for the vertical load distribution and bio-mechanical signal process used for the squat exercise mechanism analysis, and based on these results, designed device can make the more safe and reliable free weight exercise. It is applied to system design through design method with kinematic dynamic, VR device and estimation model of exercise.

Recent progress on polydopamine surface chemistry (폴리도파민 표면화학: 발명 10 년의 이야기)

  • Eom, Soomin;Park, Hong Key;Park, Jihyo;Hong, Seonki;Lee, Haeshin
    • Journal of Adhesion and Interface
    • /
    • v.19 no.1
    • /
    • pp.19-29
    • /
    • 2018
  • Polydopamine coating is one of the most straightforward and widely used method for surface modification inspired by adhesiveness of mussel foot protein contributed by co-existence of catechol and amine. This technique has been utilized not only in surface modification but other numerous fields of study as well. For the past decade, the subject of polydopamine has been thoroughly studied since the initial polydopamine research published in 2007, including its chemical structure, coating conditions, and material characteristics. In this study, we report the current trends and progress of polydopamine coating methods, the newly developing areas of polydopamine related research such as using dopamine derivatives and polyphenolic compounds, improvement of various functionalization and application of polydopamine coating, and explain the state of current attempts to discover the chemical mechanism, structure, and properties of polydopamine.