• Title/Summary/Keyword: Foot angle

Search Result 590, Processing Time 0.027 seconds

Effects of the Hip Internal Rotation Gait on Gluteal and Erector Spinae Muscle Activity (고관절 내회전 보행이 둔부 근육과 척추 기립근의 근활성도에 미치는 영향)

  • Kwon, Oh-Yun;Won, Jong-Hyuck;Oh, Jae-Seop;Lee, Won-Hwee;Kim, Soo-Jung
    • Physical Therapy Korea
    • /
    • v.13 no.1
    • /
    • pp.24-31
    • /
    • 2006
  • The purpose of this study was to identify the effect of the hip internal rotation on gluteal and erector spinae muscle electromyographic (EMG) activity during treadmill walking. Eleven healthy subjects were recruited. All subjects performed treadmill walking while maintaining the hip in neutral position (condition 1) and in internal rotation (condition 2). Surface EMG activity was recorded from four muscles (gluteus maximus (GM), gluteus medius (GMED), tensor fascia latae (TFL), and erector spinae (ES)) and the hip internal rotation angle was measured using a three dimensional motion analysis system. The gait cycle was determined with two foot switches, and stance phase was normalized as 100% stance phase (SP) for each condition using the MatLab 7.0 program. The normalized EMG activities according to the hip rotation (neutral or internal rotation) were compared using a paired t-test. During the entire SP of treadmill walking, the EMG activities of GM in condition 1 were significantly greater than in condition 2 (p<.05). The EMG activities of TFL and ES in condition 2 were significantly greater than in condition 1 (p<.05). The EMG activities of the GMED in condition 1 were significantly greater than in condition 1 (p>.05) except for 80~100% SP. Further studies need randomized control trials regarding the effect of hip internal rotation on the hip and lumbar spine muscle activity. Kinetic variables during gait or going up and down stairs are also needed.

  • PDF

Growth of Endothelial Cells on Microfabricated Silicon Nitride Membranes for an In Vitro Model of the Blood-brain Barrier

  • Harris, Sarina G.;Shuler, Michael L.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.4
    • /
    • pp.246-251
    • /
    • 2003
  • The blood-brain barrier (BBB) is composed of the brain capillaries, which are lined by endothelial cells displaying extremely tight intercellular junctions. Several attempts at creating an in vitro model of the BBB have been met with moderate success as brain capillary endothelial cells lose their barrier properties when isolated in cell culture. This may be due to a lack of recreation of the in vivo endothelial cellular environment in these models, including nearly constant contact with astrocyte foot processes. This work is motivated by the hypothesis that growing endothelial cells on one side of an ultra-thin, highly porous membrane and differentiating astrocyte or astrogliomal cells on the opposite side will lead to a higher degree of interaction between the two cell types and therefore to an improved model. Here we describe our initial efforts towards testing this hypothesis including a procedure for membrane fabrication and methods for culturing endothelial cells on these membranes. We have fabricated a 1 $\mu\textrm{m}$ thick, 2.0 $\mu\textrm{m}$ pore size, and 55% porous membrane with a very narrow pore size distribution from low-stress silicon nitride (SiN) utilizing techniques from the microelectronics industry. We have developed a base, acid, autoclave routine that prepares the membranes for cell culture both by cleaning residual fabrication chemicals from the surface and by increasing the hydrophilicity of the membranes (confirmed by contact angle measurements). Gelatin, fibronectin, and a 50/50 mixture of the two proteins were evaluated as potential basement membrane protein treatments prior to membrane cell seeding. All three treatments support adequate attachment and growth on the membranes compared to the control.

The Mechanism Study of Gait on a Load and Gender Difference

  • Ryew, Checheong;Hyun, Seunghyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.47-53
    • /
    • 2021
  • Gait kinematics and kinetics have a similar tendency between men and women, yet it remains unclear how walking while carrying a load affects the gait mechanism. Twenty adults walked with preferred velocity on level ground of 20 m relative to change of a load carriage (no load, 15%, 30% of the body weights) aimed to observe gait mechanism. We measured gait posture using the three-dimensional image analysis and ground reaction force system during stance phase on left foot. In main effect of gender difference, men showed increased displacement of center of gravity (COG) compared to women, and it showed more extended joint angle of hip and knee in sagittal plane. In main effect of a load difference, knee joint showed more flexed postuel relative to increase of load carriage. In main effect of load difference on the kinetic variables, medial-lateral force, anterior-posterior force (1st breaking, 2nd propulsive), vertical force, center of pressure (COP) area, leg stiffness, and whole body stiffness showed more increased values relative to increase of load carriage. Also, men showed more increased COP area compared to women. Interaction showed in the 1st anterior-posterior force, and as a result of one-way variance analysis, it was found that a load main effect had a greater influence on the increase in the magnitude of the braking force than the gender. The data in this study explains that women require little kinematic alteration compared to men, while men in more stiff posture accommodate an added load compared to women during gait. Additionally, it suggests that dynamic stability is maintained by adopting different gait strategies relative to gender and load difference.

Increasing the attractiveness of physical education training with the involvement of nanotechnology

  • Jinyan Ge;Yuxin Hong;Rongtian Zeng;Yunbin Li;Mostafa Habibi
    • Advances in concrete construction
    • /
    • v.16 no.6
    • /
    • pp.291-302
    • /
    • 2023
  • As the first part of the body that strikes the ground during running, sports shoes are especially important for improving performance and reducing injuries. The use of new nanotechnology materials in the shoe's sole that can affect the movement angle of the foot and the ground reaction forces during running has not been reported yet. It is important to consider the material of the sole of the shoe since it determines the long-term performance of sports shoes, including their comfort while walking, running, and jumping. Running performance can be improved by polymer foam that provides good support with low energy dissipation (low energy dissipation). Running shoes have a midsole made of ethylene propylene copolymer (EPP) foam. The mechanical properties of EPP foam are, however, low. To improve the mechanical performance of EPP, conventional mineral fillers are commonly used, but these fillers sacrifice energy return. In this study, to improve the magnificence of physical education training with nanotechnology, carbon nanotubes (CNTs) derived from recycled plastics were prepared by catalytic chemical vapor deposition and used as nucleating and reinforcing agents. As a result of the results, the physical, mechanical, and dynamic response properties of EPP foam combined with CNT and zinc oxide nanoparticles were significantly improved. When CNT was added to the nanocomposites with a weight percentage of less than 0.5 wt%, the wear resistance, physical properties, dynamic stiffness, compressive strength, and rebound properties of EPP foams were significantly improved.

Genetic Relationship of Productive Life, Production and Type Traits of Korean Holsteins at Early Lactations

  • Wasana, Nidarshani;Cho, GwangHyun;Park, SuBong;Kim, SiDong;Choi, JaeGwan;Park, ByungHo;Park, ChanHyuk;Do, ChangHee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.9
    • /
    • pp.1259-1265
    • /
    • 2015
  • The present study was performed to study the genetic relationship of productive life with production and type traits of Korean Holsteins at first three lactations. The data for the analysis from 56,054, 28,997, and 11,816 animals of first, second and third parity cows which were born from 2006 to 2011 were collected by Dairy Cattle Improvement Center, National Agricultural Co-operative Federation. Milk, protein and fat yields adjusted for 305 days and average somatic cell score considered as production traits and analyzed type traits were stature, strength, body depth, dairy form, rump angle, rump width, rear leg side view, foot angle, front attachment placement, rear attachment height, rear attachment width, udder cleft, udder depth, front teat placement and front teat length. A multi trait genetic analysis was performed using Wombat program with restricted maximum likelihood animal model composed of fixed effect of birth year, farm and the random effect of animal and random residual effect according to the traits. Heritability estimates of productive life were between 0.06 and 0.13. Genetic and phenotypic correlations between production and productive life traits ranged from 0.35 to 0.04 for milk, 0.16 to 0.05 for protein and 0.18 to 0.02 f 15-0034 (2nd) 150520 or fat. Somatic cells score showed a negative genetic and phenotypic correlation with productive life and also udder type traits, indicating that the selection for higher udder traits will likely to improve resistance to mastitis and persistence in the herd. Among all dairy form type traits, udder characters such as udder cleft showed a significant relationship with productive life. However, a specific change of heritabilities or correlations were not observed with the change of parity. Moreover, further studies are needed to further confirm the significance of the above traits and the effect of parity on above relationships in order to minimize both voluntary and involuntary culling rates while improving herd health and maintaining high yielding dairy cows.

A Study on Apply of Smart Sensors for Wheelchair Balancing Control (휠체어 균형 조정을 위한 스마트 센서의 적용에 관한 연구)

  • Ma, Linh Van;Cho, Young-bin;Kim, Jinsul
    • Journal of Digital Contents Society
    • /
    • v.19 no.8
    • /
    • pp.1585-1592
    • /
    • 2018
  • Due to un-balancing weight allocation on the wheelchair the existing wheelchair system are faced with the risk of flipping or falling when a wheelchair goes up to a hill. In to order to be safer during riding the wheelchair, in this paper, we proposed a real-time new solution using the integrated Gyro Sensor and Tilt Sensor for controlling the balance. Because the typical property of wheelchair is for the special user who meets the difficulty in moving on foot the maintain the balance of wheel-chair systems have become important and helpful. In our method, we calculate the seat angle using information from Tilt Sensor. However, due to the law of inertia when a wheelchair is moving there is a deviation in the output value of Tilt Sensor. Therefore, we have to optimize the value of the angle by utilizing the acceleration that is the output of the Gyro Sensor. We took the advantages by using the combination of Gyro and Tilt sensors. Moreover, we also solved the consumption issue of the whole system. Through various experimentations with usage of ZigBee sensor module, the power consumption for the balancing system is reduced significantly.

CRANIOFACIAL MORPHOLOGIC CHARACTERISTICS OF PROFESSIONAL SPORTSMEN (운동이 안면두개골의 형태에 미치는 영향)

  • Lim, Eun-Kyung;Choi, Yeong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.4
    • /
    • pp.563-575
    • /
    • 2003
  • The purpose of this study was to investigate differences in craniofacial characteristics of professional sportsmen who have practiced since their prepubertal periods. From the standardized lateral and P-A cephalograms of 137 sportsmen, 7 angular, 19 linear, 4 ratio, and 2 index measurements were measured and evaluated by means of statistical methods. The samples were divided into three groups: Group 1; ice hockey(n=17), foot-ball(n=27), basketball(n=16) Group 2; baseball(n=16), gymnastics(n=13), and Group 3; judo(n=18), ssireum(n=10), weight lift(n=20). The results were as follows: It seemed obvious that the cephalic indices of the 3 groups exhibited brachycephalic headform (Group 1; $0.85{\pm}0.04$, Group 2; $0.84{\pm}0.04$, Group 3; $0.83{\pm}0.06$) and there was no statistical difference among the groups (p>0.05). The facial indices of the Group 1 ($0.93{\pm}0.05$) and Group 2 ($0.93{\pm}0.04$) exhibited definite leptoprosopic facial forms while the Group 3 ($0.90{\pm}0.04$) showed more or less euryprosopic facial form, and there appeared significant difference between the Group 1 and 3 (p<0.05), and also between the Group 2 and 3 (p<0.05). There appeared strong relationships between the facial indices and the facial axis angle, mandibular plane angle, total craniofacial height, total facial height, upper anterior dental height, lower anterior dental height, mandibular length, lower anterior facial height ratio, and especially with lower anterior facial height (p<0.001). It seemed that most of the vertical facial measurements of the Group 1 and 2 appeared to be larger than those of the Group 3.

  • PDF

Effect of Theratainment Low Extremity Complex Exercise using Unstable Surface on Knee and Plantar Pressure in Patient with Genu Varum (불안정 지지면을 적용한 테라테이먼트 하지복합운동이 안굽이 무릎 하지 변형자의 무릎과 족저압에 미치는 영향)

  • Kim, Gi-Do;Heo, Myoung
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.8
    • /
    • pp.337-344
    • /
    • 2020
  • The purpose of this study was to investigate the effect of theratainment low extremity complex exercise using unstable surface on knee and static plantar pressure in patient with genu varum. 25 adult subjects were recruited and randomized into stable surface exercise group(SEG) and unstable surface exercise group(UEG). Subjects carried out complex exercise(elastic band exercise & squat exercise) for 40 minutes, 4 times per week for 5 weeks. The knee joint distance and Q-angle of all subjects measured, the foot pressure measured distribution on the front and rear of both foots during pre and post. The most outcome at post was significantly improved than the pre outcome in the both group(p<.05). The result of this study show that the low extremity complex exercise using unstable surface may be appropriate for improving structure of knee joint and static plantar pressure in patient with genu varum. This will enable the application of low extremity complex exercise using unstable surface in rehabilitation therapy of genu varum and it will help guide the selection of the therapist as one therapeutic basis.

Clinical and Radiological Outcomes of 'Blocking Kirschner Wire Technique' in Displaced Intra-Articular Calcaneal Fractures via the Extended Sinus Tarsi Approach (전위된 관절 내 종골 골절에서 확장된 족근동 접근법을 통한 Kirschner Wire 강선 지지대 고정술의 임상 및 영상학적 결과)

  • Lee, Jeong-Kil;Kang, Chan;Kim, Sang-Bum;Lee, Gi-Soo;Hwang, Jung-Mo;An, Byung-Kuk
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.3
    • /
    • pp.224-233
    • /
    • 2021
  • Purpose: The purpose of this study was to retrospectively evaluate the effect of 'Blocking Kirschner Wire (K-Wire) Technique', which has been developed to reduce protrusion of the lateral wall, in maintaining the level of reduction through clinical and radiological outcomes. Materials and Methods: Twenty-two patients with displaced intra-articular calcaneal fractures who used the blocking K-wire to maintain reduction (group A) and 44 patients that did not use blocking K-wire and were paired in 1:2 ratio with those Group A patients (group B), between January 2015 and December 2017 were enrolled in the study. All surgical procedures were performed via the extended sinus tarsi approach, and internal fixation using cannulated screws, Steinmann pins and K-wires was performed. American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot scale and postoperative recovery of exercise ability were compared for postoperative clinical outcomes. The radiological results were compared the Böhler angle, Gissane angle, calcaneal height and width, step off of posterior calcaneal joint, and the degree of protrusion of the lateral wall. Moreover, postoperative complications in both groups were compared. Results: There were no significant differences in the clinical outcomes of the two groups (p=0.924, p=0.961). The amount of Böhler angle, Gissane angle, calcaneal height and width, and step off of posterior calcaneal joint from the radiological results was not significantly different between the two groups (p=0.170, p=0.441, p=0.230, p=0.266, and p=0.400). However, the degree of protrusion of the lateral wall was 1.78 mm and 4.95 mm in group A and group B, respectively, and the difference between the two groups was significant (p=0.017). Although sural nerve entrapment and painful exostosis were more frequent in group B, they were occurred in a non-significant manner (p=0.293, p=0.655). Conclusion: Most of the clinical and radiological results as well as the complications were not significantly different between the two groups. However, the degree of protrusion of the calcaneus lateral wall in group A was promising. The 'Blocking K-Wires Technique' established by the authors may be an effective surgical option for maintaining the reduction of the lateral wall protrusion in displaced intraarticular calcaneal fractures.

Gait Analysis of a Pediatric-Patient with Femoral Nerve Injury : A Case Study (대퇴신경 손상 환아의 보행분석 : 사례연구)

  • Hwang, S.H.;Park, S.W.;Son, J.S.;Park, J.M.;Kwon, S.J.;Choi, I.S.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.165-176
    • /
    • 2011
  • The femoral nerve innervates the quadriceps muscles and its dermatome supplies anteromedial thigh and medial foot. Paralysis of the quadriceps muscles due to the injury of the femoral nerve results in disability of the knee joint extension and loss of sensory of the thigh. A child could walk independently even though he had injured his femoral nerve severely due to the penetrating wound in the medial thigh. We measured and analyzed his gait performance in order to find the mechanisms that enabled him to walk independently. The child was eleven-year-old boy and he could not extend his knee voluntarily at all during a month after the injury. His gait analysis was performed five times (GA1~GA5) for sixteen months. His temporal-spatial parameters were not significantly different after the GA2 or GA3 test, and significant asymmetry was not observed except the single support time in GA1 results. The Lower limb joint angles in affected side had large differences in GA1 compared with the normal normative patterns. There were little knee joint flexion and extension motion during the stance phase in GA1 The maximum ankle plantar/dorsi flexion angles and the maximum knee extension angles were different from the normal values in the sound side. Asymmetries of the joint angles were analyzed by using the peak values. Significant asymmetries were found in GA1with seven parameters (ankle: peak planter flexion angle in stance phase, range of motion; ROM, knee: peak flexion angles during both stance and swing phase, ROM, hip: peak extension angle, ROM) while only two parameters (maximum hip extension angle and ROM of hip joint) had significant differences in GA5. The mid-stance valleys were not observed in both right and left sides of vertical ground reaction force (GRF) in the GA1, GA2. The loading response peak was far larger than the terminal stance peak of vertical ground reaction curve in the affected side of the GA3, GA4, GA5. The measured joint moment curves of the GA1, GA2, GA3 had large deviations and all of kinetic results had differences with the normal patterns. EMG signals described an absence of the rectus femoris muscle activity in the GA1 and GA2 (affected side). The EMG signals were detected in the GA3 and GA4 but their patterns were not normal yet, then their normal patterns were detected in the GA5. Through these following gait analysis of a child who had selective injuries on the knee extensor muscles, we could verify the actual functions of the knee extensor muscles during gait, and we also could observe his recovery and asymmetry with quantitative data during his rehabilitation.