• 제목/요약/키워드: Food waste leachate (FWL)

검색결과 6건 처리시간 0.015초

메탄생산 향상을 위한 음폐수와 미세조류의 혐기성 통합소화 (Anaerobic co-digestion of food waste leachate with microalgae for improvement of methane production)

  • 이관용;프롬폴;김대기;박종진;최장승;박기영
    • 상하수도학회지
    • /
    • 제28권1호
    • /
    • pp.55-60
    • /
    • 2014
  • Food waste leachate (FWL) is a serious pollutant waste coming from the food waste recycling facilities in Korea. FWL has a high organic matter content and high COD to nitrogen (COD/N) ratio, which can disturb efficient methane production in the anaerobic digestion of FWL. In the present study a microalga, Clorella vulgaris (C.V), was used as co-substrate for the FWL anaerobic digestion in order to supply nutrients, decrease the COD/N ratio and increase its methane yield. Different co-digestion mixtures (COD/N ratios) were studied by using biochemical methane potential test and modified Gompertz equation for kinetic study. Mixed substrate of FWL and C. vulgaris in the co-digestion clearly showed more the biomethane yield than the sole substrates. The maximum methane production, 827.7 mL-$CH_4$/g-VS added, was obtained for COD/N ratio of 24/1, whereas the highest improvement of methane yield was found for COD/N ratio of 15/1.

순산소 Jet 폭기 시스템을 이용한 음폐수 처리 특성 (Treatment of Food Waste Leachate using Pure-Oxygen Jet Loop Reactor(JLR))

  • 윤애화;박노백;배종훈;전항배;권영배
    • 상하수도학회지
    • /
    • 제24권6호
    • /
    • pp.763-773
    • /
    • 2010
  • The removal efficiencies and a total oxygen transfer coefficient for food waste leachate(FWL) were estimated by using Jet Loop Reactor(JLR). Pure oxygen was used instead of air to improve oxygen concentration in the JLR for high total chemical oxygen demamd(TCOD) in FWL. In JLB, in order to examining the oxygen transfer characteristic, the circulation flowrate and oxygen flowrate were controlled with 7~10 L/min(1.5 L/min interval) and 0.2~0.5 L/min (0.1 L/min interval) and we experimented according to the each condition. As a result, Oxygen uptake rate(OUR) and oxygen transfer rate could be maximized than the oxygen flowrate to increase the circulation flowrate. In addition, it determined that JLR using the pure oxygen which can obtain the greatest oxygen transfer rate as it was the high-concentration organic wastewater like the food waste leachate through the continuous experiment was appropriate.

사료화 및 퇴비화 공정 유래 음폐수의 성상 비교 연구 (Characteristics of Food Waste Leachate Derived from Feed Supplement- and Compost-Producing Facilities)

  • 신승구;한규성;배영신;황석환
    • 유기물자원화
    • /
    • 제23권3호
    • /
    • pp.68-77
    • /
    • 2015
  • 본 연구에서는 수도권매립지 반입 음폐수에 대한 성상분석을 통하여 음폐수의 일반적인 특성을 살펴보고, 음폐수 유래 공정(사료화, 퇴비화)에 따른 음폐수 성상 특징을 비교하였다. 음폐수는 고농도의 유기물을 함유한 폐수이며 습식 혐기소화가 가능한 범위의 함수율을 나타내었다. 음폐수는 산성을 띠며 비교적 높은 세부 성상(탄수화물, 단백질, 지방, 에탄올, 아세트산, 프로피온산 등)의 변화율을 나타냈다. 사료화 및 퇴비화 공정 유래 음폐수 성상을 비교한 결과, 평균값 기준으로 사료화가 다소 낮은 농도를 보였으나 분산분석에 따른 통계적 차이는 유의성이 없었다.

열가용화를 이용한 음식물탈리여액의 고형물 감량화 및 메탄 생산에 관한 연구 (Solid Reduction and Methane Production of Food Waste Leachate using Thermal Solubilization)

  • 최정수;김현구;주현종
    • 한국물환경학회지
    • /
    • 제30권5호
    • /
    • pp.559-567
    • /
    • 2014
  • Since the ocean dumping of organic wastes is prohibited under the London Convention, the need for land treatment of food waste leachate (FWL) has significantly been growing in recent years. This study was conducted to use thermal solubilization to turn FWL into a form that can easily be degraded during the anaerobic digestion process, thereby reducing the percentage of solids and increasing the production of methane. To derive the optimal operating conditions of thermal solubilization, a laboratory-scale reactor was built and operated. The optimal reaction temperature and time turned out to be $190^{\circ}C$ and 90 min, respectively. The BMP test showed a methane production of 465 mL $CH_4/g$ $COD_{Cr}$ and a biodegradation rate of 90.1%. The production of methane rose by about 15%, compared with no the application of thermal solubilization. To reduce the solid content of FWL and improve the methane production, therefore, it may be helpful to apply thermal solubilization to pre-treatment facilities for anaerobic digestion.

Biomethanation of Sewage Sludge with Food Waste Leachate Via Co-Digestion

  • Shin, Jingyeong;Kim, Young Beom;Jeon, Jong Hun;Choi, Sangki;Park, In Kyu;Kim, Young Mo
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권8호
    • /
    • pp.1513-1518
    • /
    • 2017
  • Anaerobic mono- and co-digestion of sewage sludge and food waste leachate (FWL) were performed by assessing methane production and characterizing microbial communities. Anaerobic digestion (AD) of waste activated sludge (WAS) alone produced the lowest methane ($281ml\;CH_4$), but an approximately 80% increase in methane production was achieved via co-digestion of WAS and FWL ($506ml\;CH_4$). There were less differences in the diversity of bacterial communities in anaerobic digesters, while archaeal (ARC) and bacterial (BAC) amounts reflected AD performance. Compared with the total ARC and BAC amounts in the mono-digestion of WAS, the ARC and BAC amounts increased two and three times, respectively, during co-digestion of FWL and WAS. In characterized archaeal communities, the dominant ratio of hydrogenotrophic methanogens in the mono-digestion of WAS approached nearly a 1:1 ratio of the two acetoclastic and hydrogenotrophic methanogens in the co-digestion of FWL and WAS. The ARC/BAC ratio in the digesters varied in the range of 5.9% to 9.1%, indicating a positive correlation with the methane production of AD.

바이오리액터 매립공법의 폐기물 매립지에 적용가능성 평가를 위한 침하특성 분석 (Analyses of Settlement Characteristics Evaluating the Applicability of Bioreactor Landfills on MSW Landfills)

  • 조영석;장연수
    • 한국지반공학회논문집
    • /
    • 제36권5호
    • /
    • pp.17-24
    • /
    • 2020
  • 폐기물 매립지에 바이오리액터 매립공법을 적용하는 것이 폐기물의 생물학적 압축 촉진에 미치는 영향을 분석하기 위하여 실내침하실험을 수행하고, 그 결과 구한 2차 압축지수(Cα)를 국외연구결과와 비교하였다. 실내침하실험의 2차 압축지수들을 분석한 결과 침출수에 음폐수를 혼합하여 재순환하는 방법은 음폐수 내 유기물질이 추가적인 생물학적 압축을 유발하며 침출수 재순환과 위생매립공법보다 폐기물 침하를 각 2배, 2.81배 가속화할 수 있는 것으로 나타났다. 본 연구에서 사용한 폐기물의 2차 압축지수는 국외연구 폐기물의 2차 압축지수보다 작았는데 그 이유는 음식물 쓰레기를 감소시키기 위한 국내 폐기물 정책에 따라 폐기물 내 유기물 함량이 감소하였기 때문이다. 생분해성 폐기물 함량과 2차 압축지수의 관계를 분석한 결과 폐기물의 2차 압축지수는 생분해성 폐기물 함량에 민감하며 생분해성 폐기물 함량이 증가할수록 커지는 것으로 나타났다.