This study was conducted to develop the fermentation kinetic model for the prediction of acidity and pH changes in Kimchi as a function of fermentation temperatures. The fitness of the model was evaluated using traditional two-step method and an alternative non-linear regression method. The changes in acidity and pH during fermentation followed the pattern of the first order reaction of a two-step method. As the fermentation temperature increased from 4$^{\circ}C$ to 28, the reaction rates of acidity and pH were increased 8.4 and 7.6 times, respectively. The activation energies of acidity and pH were 16.125 and 16.003kcal/mole. The average activation energies of acidity and pH using a non-linear method were 16.006 by the first order and 15.813 kcal/mole by the zero order, respectively. The non-linear procedure had better fitting 개 experimental data of the acidity and pH than two-step method. The shelf-lives based on the time to reach the 1.0% of acidity were 33.1day at 4$^{\circ}C$ and 2.8 day 28$^{\circ}C$.
Kim, Hyo-suk;Do, Ki Seok;Park, Joo Hyeon;Kang, Wee Soo;Lee, Yong Hwan;Park, Eun Woo
The Plant Pathology Journal
/
제36권1호
/
pp.54-66
/
2020
This study was conducted to evaluate usefulness of numerical weather prediction data generated by the Unified Model (UM) for plant disease forecast. Using the UM06- and UM18-predicted weather data, which were released at 0600 and 1800 Universal Time Coordinated (UTC), respectively, by the Korea Meteorological Administration (KMA), disease forecast on bacterial grain rot (BGR) of rice was examined as compared with the model output based on the automated weather stations (AWS)-observed weather data. We analyzed performance of BGRcast based on the UM-predicted and the AWS-observed daily minimum temperature and average relative humidity in 2014 and 2015 from 29 locations representing major rice growing areas in Korea using regression analysis and two-way contingency table analysis. Temporal changes in weather conduciveness at two locations in 2014 were also analyzed with regard to daily weather conduciveness (Ci) and the 20-day and 7-day moving averages of Ci for the inoculum build-up phase (Cinc) prior to the panicle emergence of rice plants and the infection phase (Cinf) during the heading stage of rice plants, respectively. Based on Cinc and Cinf, we were able to obtain the same disease warnings at all locations regardless of the sources of weather data. In conclusion, the numerical weather prediction data from KMA could be reliable to apply as input data for plant disease forecast models. Weather prediction data would facilitate applications of weather-driven disease models for better disease management. Crop growers would have better options for disease control including both protective and curative measures when weather prediction data are used for disease warning.
International journal of advanced smart convergence
/
제10권4호
/
pp.104-109
/
2021
In the aftermath of the global pandemic that started in 2019, there have been many changes in the import/export and supply/demand process of agricultural products in each country. Amid these changes, the necessity and importance of each country's food self-sufficiency rate is increasing. There are several conditions that must accompany efficient agricultural activities, but among them, temperature is by far one of the most important conditions. For this reason, the need for high-accuracy climate data for stable agricultural activities is increasing, and various studies on climate prediction are being conducted in Korea, but data that can visually confirm climate prediction data for farmers are insufficient. Therefore, in this paper, we propose an artificial intelligence-based temperature prediction algorithm that can predict future temperature information by collecting and analyzing temperature data of farms in Gyeonggi-do in Korea for the last 10 years. If this algorithm is used, it is expected that it can be used as an auxiliary data for agricultural activities.
Objectives: The purpose of this study was to measure the resting metabolic rate (RMR) and to assess the accuracy of RMR predictive equations for Korean farmers. Methods: Subjects were 161 healthy Korean farmers (50 males, 111 females) in Gangwon-area. The RMR was measured by indirect calorimetry for 20 minutes following a 12-hour overnight fasting. Selected predictive equations were Harris-Benedict, Mifflin, Liu, KDRI, Cunningham (1980, 1991), Owen-W, F, FAO/WHO/UNU-W, WH, Schofield-W, WH, Henry-W, WH. The accuracy of the equations was evaluated on the basis of bias, RMSPE, accurate prediction and Bland-Altman plot. Further, new RMR predictive equations for the subjects were developed by multiple regression analysis using the variables highly related to RMR. Results: The mean of the measured RMR was 1703 kcal/day in males and 1343 kcal/day in females. The Cunningham (1980) equation was the closest to measured RMR than others in males and in females (males Bias -0.47%, RMSPE 110 kcal/day, accurate prediction 80%, females Bias 1.4%, RMSPE 63 kcal/day, accurate prediction 81%). Body weight, BMI, circumferences of waist and hip, fat mass and FFM were significantly correlated with measured RMR. Thus, derived prediction equation as follow : males RMR = 447.5 + 17.4 Wt, females RMR = 684.5 - 3.5 Ht + 11.8 Wt + 12.4 FFM. Conclusions: This study showed that Cunningham (1980) equation was the most accurate to predict RMR of the subjects. Thus, Cunningham (1980) equation could be used to predict RMR of Korean farmers studied in this study. Future studies including larger subjects should be carried out to develop RMR predictive equations for Korean farmers.
소시지의 세조공정 중의 주 공정인 쿠킹공정에서 가장 영향을 많이 미치는 인자는 쿠킹온도와 상대습도이다. 따라서 쿠킹공정에서 에너지의 효율성을 높이기 위해 상기 인자와 소시지 직경의 변화에 따른 쿠킹시간을 측정하여 쿠킹시간 예측모델식을 수립하였다. 또한 쿠킹 전후의 일반성분 분석과 중량변화 및 각 온도와 상대습도에서의 TPA 분석을 하였다. 쿠킹시간 예측모델식을 SPSS computer program을 이용하여 가장 오차가 적은 범위에서의 예측모델식을 얻었다. 쿠킹시간 예측모델식을 쿠킹온도와 상대습도와 소시지 직경에 대한 각각의 함수관계를 Scattergram을 작성하여 R-square값을 가장 높은 함수를 취하여 각각의 모델식을 수립한 후 독립변수와의 관계를 종합하여 예측값을 구할 수 있는 최종적인 예측모델식을 수립하였다. 또한 소시지 직경 1.5cm에 대한 쿠킹 동안 중량변화는 온도와 상대습도가 적게 소모되어 소시지의 중량변화가 적게 일어남을 알 수 있었다. 물성치를 측정해 본 결과 온도와 상대습도의 변화에 따른 경도와 응집력의 값은 크게 변화가 일어났으나 반면에 탄성과 저작성의 값은 그 변화가 다소 적게 일어남을 알 수 있었다.
어묵의 유통기한을 예측하기 위해서 어묵을 30, 35, $40^{\circ}C$에서 각각 저장하면서 저장기간 중 총 호기성균 수를 측정하였다. Gompertz model을 이용하여 최대성장속도와 유도기를 구하였고, 각 parameter의 온도 의존성에 대한 식을 통해 유통기한에 관한 예측모델 식을 얻었다. 예측모델 식으로부터 계산된 유통기한은 0, 4, $10^{\circ}C$에서 각각 6.9, 5.5, 3.8일이었다. 이렇게 얻어진 예측모델 식의 적합성 평가를 위해 $A_f$와 $B_f$ 값을 산출한 결과, 각각 1.008, 1.003으로 나타나 예측모델식의 적합성이 뛰어났다. 이러한 결과로부터 본 연구에서 얻어진 유통기한예측 모델 식은 어묵의 유통기한 설정의 기초연구로써 활용될 수 있다고 판단된다.
Food security will be affected by climate change worldwide, particularly in the developing world, where the most important food products originate from plants. Plants are often exposed to environmental stresses that may affect their growth, development, yield, and food quality. Auxin is a hormone that plays a critical role in improving plants' tolerance of environmental conditions. Auxin controls the expression of many stress-responsive genes in plants by interacting with specific cis-regulatory elements called auxin-responsive elements (AuxREs). In this work, we performed an in silico prediction of AuxREs in promoters of five auxin-responsive genes in Zea mays. We applied a data fusion approach based on the combined use of Dempster-Shafer evidence theory and fuzzy sets. Auxin has a direct impact on cell membrane proteins. The short-term auxin response may be represented by the regulation of transmembrane gene expression. The detection of an AuxRE in the promoter of prolyl oligopeptidase (POP) in Z. mays and the 3-fold overexpression of this gene under auxin treatment for 30 min indicated the role of POP in maize auxin response. POP is regulated by auxin to perform stress adaptation. In addition, the detection of two AuxRE TGTCTC motifs in the upstream sequence of the bx1 gene suggests that bx1 can be regulated by auxin. Auxin may also be involved in the regulation of dehydration-responsive element-binding and some members of the protein kinase superfamily.
Numerous reports have evaluated the predictive ability of carcass probes for meat quality using measurements taken early postmortem or near 24 h. The intervening time period, however, has been largely ignored. In this study, the capacity of three probes [pH, electrical conductivity (EC), and grading probe light reflectance (GP)] to predict pork longissimus muscle quality (drip and cooking losses, Warner-Bratzler shear, $L^*$, n = 30) was evaluated at 45 min, 90 min, 3, 6, 12, 24, and 48 h postmortem. The strongest relationships were observed between cooking loss and 6 h EC and GP ($R^2$ = 0.66, 0.72), and $L^*$ and GP ($R^2$ = 0.57-0.66, 12-48 h). pH was most valuable early postmortem ($R^2$ = 0.63, 90 min with cooking loss). GP at 6 h most effectively ($R^2$ = 0.84) predicted a two factor (cooking loss+$L^*$) meat quality index. Results emphasize the predictive value of measures taken between 3 and 12 h postmortem.
For the accurate prediction of freezing time, probably the most difficult factor to measure and major error source is the surface heat transfer coefficient. In this work, surface heat transfer coefficient were determined for still air freezing and immersion freezing methods by theory of the transient temperature method and confirmed by using a modification of plank's equation to predict the freezing time of ground lean beef. The results showed the cooling rate of immersion freezing was about 11 times faster than that of still air freezing method. A comparison of surface heat transfer coefficient of copper plate and ground lean beef resulted an difference of 25-30% because the food sample surface is not smooth as copper plate. Also, when h-values measured by ground lean beef were applicated to modified model, the accuracy of its results is very high as difference of about 8%.
Detection of specific compounds influencing food flavor quality is not easy. Electronic nose, comprised of electronic chemical sensors with partial specificity and appropriate pattern recognition system, is capable of recognizing simple and complex volatiles. It provides fast analysis with simple and straightforward results and is best suited for quality control and process monitoring of flavor in food industry. This review examines application of electronic nose in food analysis with brief explanation of its principle. Characteristics of different sensors and sensor drift. and solutions to related problems are reviewed. Applications of electronic nose in food industry include monitoring of fermentation process and lipid oxidation, prediction of shelf life, identification of irradiated volatile compounds, discrimination of food material origin, and quality control of food and processing by principal component analysis and neural network analysis. Electronic nose could be useful for quality control in food industry when correlating analytical instrumental data with sensory evaluation results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.