Purpose: The purpose of this study was evaluated to compare the predictive power of distress prediction models by using discriminant analysis method and logit analysis method for food service franchise industry in Korea. Research design, data and methodology: Forty-six food service franchise industry with high sales volume in the 2017 were selected as the sample food service franchise industry for analysis. The fourteen financial ratios for analysis were calculated from the data in the 2017 statement of financial position and income statement of forty-six food service franchise industry in Korea. The fourteen financial ratios were used as sample data and analyzed by t-test. As a result seven statistically significant independent variables were chosen. The analysis method of the distress prediction model was performed by logit analysis and multiple discriminant analysis. Results: The difference between the average value of fourteen financial ratios of forty-six food service franchise industry was tested through t-test in order to extract variables that are classified as top-leveled and failure food service franchise industry among the financial ratios. As a result of the univariate test appears that the variables which differentiate the top-leveled food service franchise industry to failure food service industry are income to stockholders' equity, operating income to sales, current ratio, net income to assets, cash flows from operating activities, growth rate of operating income, and total assets turnover. The statistical significances of the seven financial ratio independent variables were also confirmed by logit analysis and discriminant analysis. Conclusions: The analysis results of the prediction accuracy of each distress prediction model in this study showed that the forecast accuracy of the prediction model by the discriminant analysis method was 84.8% and 89.1% by the logit analysis method, indicating that the logit analysis method has higher distress predictability than the discriminant analysis method. Comparing the previous distress prediction capability, which ranges from 75% to 85% by discriminant analysis and logit analysis, this study's prediction capacity, which is 84.8% in the discriminant analysis, and 89.1% in logit analysis, is found to belong to the range of previous study's prediction capacity range and is considered high number.
The purpose of this study was to monitor changes in the quality of ginseng and predict its shelf-life. As the storage period of ginseng increased, some quality indicators, such as water-soluble pectin (WSP), CDTA-soluble pectin (CSP), cellulose, weight loss, and microbial growth increased, while others (Na2CO3-soluble pectin/NSP, hemicellulose, starch, and firmness) decreased. Principal component analysis (PCA) was performed using the quality attribute data and the principal component 1 (PC1) scores extracted from the PCA results were applied to the multivariate analysis. The reaction rate at different temperatures and the temperature dependence of the reaction rate were determined using kinetic and Arrhenius models, respectively. Among the kinetic models, zeroth-order models with cellulose and a PC1 score provided an adequate fit for reaction rate estimation. Hence, the prediction model was constructed by applying the cellulose and PC1 scores to the zeroth-order kinetic and Arrhenius models. The prediction model with PC1 score showed higher R2 values (0.877-0.919) than those of cellulose (0.797-0.863), indicating that multivariate analysis using PC1 score is more accurate for the shelf-life prediction of ginseng. The predicted shelf-life using the multivariate accelerated shelf-life test at 5, 20, and 35℃ was 40, 16, and 7 days, respectively.
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.11
/
pp.151-156
/
2019
This study aims to develop a distress prediction model and to evaluate distress prediction power for the food services industry by using 2017 food service industry financial ratios. Samples were collected from 46 food service industries, and we extracted 14 financial ratios from them. The results show that, first, there are eight ratios (financial ratio, current ratio, operating income to sales, net income to assets, ratio of cash flows, income to stockholders' equity, rate of operating income, and total asset turnover) that can discriminate failures in food service industries and the top-level food service industries. Second, by using these eight financial ratios, the logit function classifies the top-level food service industries, and failures in the food service industry can be estimated by using logit analysis. The verification results as to accuracy in the estimated logit analysis indicate that the model's distress-prediction power is 89.1%.
Sang Seop Kim;Ji-Young Choi;Jeong Ho Lim;Jeong-Seok Cho
Food Science and Preservation
/
v.30
no.2
/
pp.224-234
/
2023
We analyzed the major quality characteristics of red pepper powders from various regions and predicted these characteristics nondestructively using shortwave infrared hyperspectral imaging (HSI) technology. We conducted partial least squares regression analysis on 70% (n=71) of the acquired hyperspectral data of the red pepper powders to examine the major quality characteristics. Rc2 values of ≥0.8 were obtained for the ASTA color value (0.9263) and capsaicinoid content (0.8310). The developed quality prediction model was validated using the remaining 30% (n=35) of the hyperspectral data; the highest accuracy was achieved for the ASTA color value (Rp2=0.8488), and similar validity levels were achieved for the capsaicinoid and moisture contents. To increase the accuracy of the quality prediction model, we conducted spectrum preprocessing using SNV, MSC, SG-1, and SG-2, and the model's accuracy was verified. The results indicated that the accuracy of the model was most significantly improved by the MSC method, and the prediction accuracy for the ASTA color value was the highest for all the spectrum preprocessing methods. Our findings suggest that the quality characteristics of red pepper powders, even powders that do not conform to specific variables such as particle size and moisture content, can be predicted via HSI.
Applicability of near infrared reflectance spectroscopy (NIRS) was examined for quality control of red pepper powder in milling factories. Prediction of chemical composition was performed using modified partial least square (MPLS) techniques. Analysis of total 51 and 21 red pepper powder samples by conventional methods for calibration and validation, respectively, revealed standard error of prediction (SEP) and correlation coefficient ($R^2$) of moisture content, ASTA color value, capsaicinoid content, and total sugar content were 0.55 and 0.90, 8.58 and 0.96, 31.60 and 0.65, and 1.82 and 0.86, respectively; SEP and $R^2$ were low and high, respectively, except for capsaicinoid content. The results indicate, with slight improvement, on-line quality measurement of red pepper powder with NIRS could be applied in red pepper milling factories.
Kim, Jae-Hee;Kim, Myung-Hee;Kim, Gwi-Sun;Park, Ji-Sun;Kim, Eun-Kyung
Nutrition Research and Practice
/
v.9
no.4
/
pp.370-378
/
2015
BACKGROUND/OBJECTIVES: Athletes generally desire changes in body composition in order to enhance their athletic performance. Often, athletes will practice chronic energy restrictions to attain body composition changes, altering their energy needs. Prediction of resting metabolic rates (RMR) is important in helping to determine an athlete's energy expenditure. This study compared measured RMR of athletic and non-athletic adolescents with predicted RMR from commonly used prediction equations to identify the most accurate equation applicable for adolescent athletes. SUBJECTS/METHODS: A total of 50 athletes (mean age of $16.6{\pm}1.0years$, 30 males and 20 females) and 50 non-athletes (mean age of $16.5{\pm}0.5years$, 30 males and 20 females) were enrolled in the study. The RMR of subjects was measured using indirect calorimetry. The accuracy of 11 RMR prediction equations was evaluated for bias, Pearson's correlation coefficient, and Bland-Altman analysis. RESULTS: Until more accurate prediction equations are developed, our findings recommend using the formulas by Cunningham (-29.8 kcal/day, limits of agreement -318.7 and +259.1 kcal/day) and Park (-0.842 kcal/day, limits of agreement -198.9 and +196.9 kcal/day) for prediction of RMR when studying male adolescent athletes. Among the new prediction formulas reviewed, the formula included in the fat-free mass as a variable [$RMR=730.4+15{\times}fat-free\;mass$] is paramount when examining athletes. CONCLUSIONS: The RMR prediction equation developed in this study is better in assessing the resting metabolic rate of Korean athletic adolescents.
This study explores how elementary school students construct food pyramid prediction models using scientific reasoning. Thirty small groups of sixth-grade students in the Kyoungki province (n=138) participated in this study; each small group constructed a food pyramid prediction model based on scientific reasoning, utilizing prior knowledge on topics such as biotic and abiotic factors, food chains, food webs, and food pyramid concepts. To understand the scientific reasoning applied by the students during the modeling process, three forms of qualitative data were collected and analyzed: each small group's discourse, their representation, and the researcher's field notes. Based on this data, the researcher categorized the students' model patterns into three categories and identified how the students used scientific reasoning in their model patterns. The study found that the model patterns consisted of the population number variation model, the biological and abiotic factors change model, and the equilibrium model. In the population number variation model, students used phenomenon-based reasoning and relation-based reasoning to predict variations in the number of producers and consumers. In the biotic and abiotic factors change model, students used relation-based reasoning to predict the effects on producers and consumers as well as on decomposers and abiotic factors. In the equilibrium model, students predicted that "the food pyramid would reach equilibrium," using relation-based reasoning and model-based reasoning. This study demonstrates that elementary school students can systematically elaborate on complicated ecology concepts using scientific reasoning and modeling processes.
Journal of The Korean Society of Agricultural Engineers
/
v.54
no.3
/
pp.141-148
/
2012
Food policy is considered as the most basic and central issue for all countries, while making efforts to keep each country's food sovereignty and enhance food self-sufficiency. In the case of Korea where the staple food is rice, the rice yield prediction is regarded as a very important task to cope with unstable food supply at a national level. In this study, Korean paddy Rice yield Prediction Model (KRPM) developed to predict the paddy rice yield using meteorological element and MODIS NDVI. A multiple linear regression analysis was carried out by using the NDVI extracted from satellite image. Six meteorological elements include average temperature; maximum temperature; minimum temperature; rainfall; accumulated rainfall and duration of sunshine. Concerning the evaluation for the applicability of the KRPM, the accuracy assessment was carried out through correlation analysis between predicted and provided data by the National Statistical Office of paddy rice yield in 2011. The 2011 predicted yield of paddy rice by KRPM was 505 kg/10a at whole country level and 487 kg/10a by agroclimatic zones using stepwise regression while the predicted value by KOrea Statistical Information Service was 532 kg/10a. The characteristics of changes in paddy rice yield according to NDVI and other meteorological elements were well reflected by the KRPM.
Freshness of stored soybean curd as sensitivity ($R_{gas}/R_{air}$) was evaluated at 48-50 hr intervals using electronic nose at regular sequential square-wave temperatures between $4\;-\;10^{\circ}C$. Obtained kinetic data from apparent first principal component score $(PC1)_{app}$ and storage time were used for prediction of freshness. Percentage difference between predicted and actual values of stored soybean curd was less than 8.9% under fluctuating temperature condition.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.