• Title/Summary/Keyword: Food pathogens

Search Result 807, Processing Time 0.032 seconds

Antimicrobial Activities of 1,4-Benzoquinones and Wheat Germ Extract

  • Kim, Myung-Hee;Jo, Sung-Hoon;Ha, Kyoung-Soo;Song, Ji-Hye;Jang, Hae-Dong;Kwon, Young-In
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.8
    • /
    • pp.1204-1209
    • /
    • 2010
  • We evaluated the antibacterial activities of selected edible Korean plant seeds against the food-borne pathogens Staphylococcus aureus KCTC1927, Escherichia coli KCTC2593, Salmonella typhimurium KCTC2054, and Bacillus cereus KCTC1014. While screening for antibacterial agents, we discovered that wheat germ extract contains 2,6-dimethoxy-1,4-benzoquinone (DMBQ) and is highly inhibitory to S. aureus and B. cereus. This is the first report of the antibacterial activity of wheat germ extract. We also investigated the antibacterial activities of the 1,4-benzoquinone standards 1,4-benzoquinone (BQ), hydroquinone (HQ), methoxybenzoquinone (MBQ), and 2,6-dimethoxy-1,4-benzoquinone (DMBQ). DMBQ and BQ were the most highly inhibitory to S. aureus and S. typhimurium, followed by MBQ and HQ. MICs for DMBQ and BQ ranged between 8 and 64 ${\mu}g/ml$ against the four foodborne pathogens tested. DMBQ and BQ showed significant antibacterial activity; the most sensitive organism was S. aureus with an MIC of 8 ${\mu}g/ml$. BQ exhibited good activity against S. typhimurium (32 ${\mu}g/ml$) and B. cereus (32 ${\mu}g/ml$). The results suggest that wheat germ extract has potential for the development of natural antimicrobials and food preservatives for controlling foodborne pathogens.

Antimicrobial Effect of Lithospermum erythrorhizon Extracts on the Food-borne Pathogens (지치추출물의 식중독성 미생물에 대한 항균효과)

  • Bae, Ji-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.823-827
    • /
    • 2004
  • Antimicrobial effect of Lithospermum erythrorhizon extracts against food-borne pathogens was investigated. L. erythrorhizon was extracted with methanol at room temperature, and the extraction was sequentially fractionated using petroleum ether, chloroform, ethyl acetate, and methanol. Antimicrobial activity of L. erythrorhizon extracts was determined using paper disc method against food-borne pathogens and food spoilage bacteria. Ethyl acetate extracts of L. erythrorhizon showed the highest activity against Staphylococcus aureus and Shigella dysenteriae. Synergistic effect was found in combined extracts of L. erythrorhizon and Sophora subprostrata as compared with each extract alone. Growth inhibition curve was determined using ethyl acetate extracts of L. erythrorhizon, against S. aureus and S. dysenteriae. Ethyl acetate extract of L. erythrorhizon, showed strong antimicrobial activity against S. aureus at 4,000 ppm, retarding growth of S. aureus more than 48 hr and S. dysenteriae up to 12 hr.

Determination of Risk Ranking of Combination of Potentially Hazardous Foods and Foodborne Pathogens Using a Risk Ranger (Risk Ranger를 활용한 잠재적 위해식품과 미생물 조합에 대한 위해순위 결정)

  • Min, Kyung-Jin;Hwang, In-Gyun;Lee, Soon-Ho;Cho, Joon-Il;Yoon, Ki-Sun
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.2
    • /
    • pp.91-99
    • /
    • 2011
  • Risk ranking must be determined for various hazards/food combinations to conduct microbial risk management effectively. Risk Ranger is a simple, easy-to-use calculation tool developed in Microsoft Excel and designed to rank the risk (low, medium, and high) for semi-quantitative microbial risk assessment. The user is required to answer 11 questions in Risk Ranger related to 1) severity of the hazard, 2) likelihood of a disease-causing dose of the hazard being present in the meal, and 3) the probability of exposure to the hazard in a defined time. This study determined the risk ranking for twenty three combinations of foodborne pathogens/potentially hazardous foods (PHFs) using a Risk Ranger. In this study, pathogenic E. coli in fresh cut produce salad was scored as 79, which was the highest rank among the 23 combinations of the foodborne pathogens and PHFs. On the other hand, zero risk was obtained with V parahaemolyticus in sushi, Salmonella in meat products and E. coli O157:H7 in hamburger patties. Although Risk Ranger is very simple method to rate the risk of foodborne pathogens and PHFs combination, the accuracy of result was mainly affected by the availability and accuracy of data in the literature. According to the result of literature review, the data are needed for contamination rate of raw materials, consumption amount/frequency of PHFs, and the effect of processing on pathogen. Risk ranking must be continuously revalidated with new data.

Microbial Risk Assessment of Processed Foods in Korea (우리나라의 가공식품에 대한 미생물학적 위험도 평가)

  • 김창남;노우섭
    • Journal of Food Hygiene and Safety
    • /
    • v.12 no.4
    • /
    • pp.340-345
    • /
    • 1997
  • This study was undertaken to evaluate microbial risk degree of some processed foods in Korea. In this study the data on the outbreak of foodborne diseases during recent 18 years (1976-1989, 1993-1996. 8) were analyzed. The most frequently isolated pathogens were Salmonella (36.9%); followed vibrio (22.0%), Staphylococcus (15.7%) and Escherichia coli (13.3%). Outbreak rate of Staphylococcus, Vibrio, E. coli and Salmonella, was 33.0%, 23.5%, 17.5% and 17.1%, respectively. Overall risk degree of pathogens by fatality rate, outbreak rate and pathogen amount for foodborne outbreak was Clostridium, 5, Staphylococcus and Vibrio, 4, Salmonella and E. coli, 3. Based on foodborne pathogens, the risk degree of raw seafoods, raw eggs and processed seafoods were 4, and those of raw meats, Doshiraks and milk products were 3. Also, based on processing characteristics of foods, the risk degree of surimi-based imitation crab was 3. Foods of the highest actual risk degree were raw seafoods and raw eggs (16); followed raw meats (15), surimi-based imitation crab (12), Doshirak (9) and milk products (6).

  • PDF

Screening of Lactobacilli Derived from Fermented Foods and Partial Characterization of Lactobacillus casei OSY-LB6A for Its Antibacterial Activity against Foodborne Pathogens

  • Chung, Hyun-Jung;Yousef, Ahmed E.
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.2
    • /
    • pp.162-167
    • /
    • 2009
  • Various fermented foods were screened in search of food-grade bacteria that produce bacteriocins active against Gram-negative pathogens. An isolate from a mold-ripened cheese presented antibacterial activity against Gram-positive and Gram-negative bacteria. The most active isolate was identified as Lactobacillus casei by a biochemical method, ribotyping, and membrane lipid analysis, and was designated as OSY-LB6A. The cell extracts of the isolate showed inhibition against Escherichia coli p220, E. coli O157, Salmonella enerica serovar Enteritidis, Salmonella Typhimurium, and Listeria monocytogenes. The antibacterial nature of the cell extract from the isolate was confirmed by eliminating the inhibitory effects of acid, hydrogen peroxide, and lytic bacteriophages. The culture supernatant and cell extract retained antibacterial activity after heating at $60{\sim}100^{\circ}C$ for $10{\sim}20$ min. The activity of the cell extract from Lb. casei was eliminated by pronase and lipase. Finally, the cell extract showed a bactericidal mode of action against E. coli in phosphate buffer solution, but it was bacteriostatic in broth medium and food extracts.

Characteristic of Antibiotic Resistance of Foodborne Pathogens Adapted to Garlic, Allium sativum L.

  • Moon, Bo-Youn;Lee, Eun-Jin;Park, Jong-Hyun
    • Food Science and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.511-515
    • /
    • 2006
  • Antibiotic resistance of foodborne pathogens adapted to garlic (Allium sativum Linn.) was determined in order to understand the relationship between antibiotic resistance and garlic. The Gram (-) strains of Escherichia coli and Salmonella typhimurium and the Gram (+) strains of Bacillus cereus and Staphylococcus aureus were subcultured consecutively in a garlic broth, and the surviving colonies on the agar were selected as the adapted strains. Minimal inhibitory concentrations (MIC) for 15 antibiotics on the adapted strains were determined on Muller-Hinton Infusion agar. Adaptation to 1.3%(v/v) garlic juice increased MIC for vancomycin, aminoglycoside, and erythromycin on B. cereus, and for ampicillin and erythromycin on E. coli O157:H7. MIC of aminoglycosides, chloramphenicol, and vancomycin on the adapted S. aureus increased. The adapted S. typhimurium was more resistant to penicillin and vancomycin than the non-treated strain. The adapted S. typhimurium and S. aureus lost their antibiotic resistance in non-garlic stress conditions. However, the adapted B. cereus was still resistant to erythromycin and vancomycin, and the adapted E. coli was also resistant to erythromycin. Antibacterial garlic might increase the antibiotic resistance of E. coli, B. cereus, S. aureus, and S. typhimurium and this resistance can continue even without the stress of garlic. Therefore, garlic as a food seasoning could influence the resistance of such pathogens to these antibiotics temporarily or permanently.

Screening of Bacteriocinogenic Lactic Acid Bacteria and Their Antagonistic Effects in Sausage Fermentation

  • Kim, Wang-June
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.461-467
    • /
    • 1996
  • Four strains of lactic acid bacteria (LAB), that lower the pH of sausage $\leq$ 4.2 within 24 h of incubation at $37^{\circ}C$, were screened from 57 bacteriocin producing LAB which were isolated from kajamie shikhae and natural fermented sausages. The proteinaceous nature of the bacteriocin was confirmed by losing antimicrobial activity after pronase treatment. Inhibitory activity against pathogens, times of bacteriocin production and sensory tests were compared between 4 isolates and 3 commercial starters. Especially, strain NFS #8-1, screened from natural fermented sausage and identified as Pediococcus acidilactici, antagonized a large number of foodborne pathogens including Listeria monocytogenes, Aeromonas hydrophila, Bacillus cereus, Clostridium perfringens, Salmonella typhimurium and Staphylococcus aureus. Production of bacteriocin by strain NFS #8-1 was early in the growth phase (mid log phase) and its sensory acceptance was high. The feasibility of using strain NFS #8-1 as a starter for the production of microbiologically safe fermented sausage is envisaged.

  • PDF

Mitigating Antibiotic Resistance at the Livestock-Environment Interface: A Review

  • Ma, Zhengxin;Lee, Shinyoung;Jeong, K. Casey
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1683-1692
    • /
    • 2019
  • The rise of antimicrobial resistance (AR) is a major threat to global health. The food animal industry contributes to the increasing occurrence of AR. Multiple factors can affect the occurrence and dissemination of AR in the animal industry, including antibiotic use and farm management. Many studies have focused on how the use of antibiotics in food-producing animals has led to the development of AR. However, a few effective mitigating strategies for AR have been developed in food-producing animals, especially those exposed to the environment. The aim of this review is to summarize potential strategies applicable for mitigating AR at the environment-livestock interface.

Antimicrobial Effect of Buffered Sodium Citrate (BSC) on Foodborne Pathogens in Liquid Media and Ground Beef

  • Ryu, Si-Hyun;Fung, Daniel -Y. C.
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.3
    • /
    • pp.239-243
    • /
    • 2010
  • The antimicrobial effects of a commercially available, buffered sodium citrate (BSC) were evaluated for the reduction of total aerobic bacteria count, Salmonella Typhimurium, Escherichia coli O157:H7, Listeria monocytogenes and Staphylococcus aureus in a liquid medium and ground beef. BSC at 0, 1, 2 and 4.8% (wt/vol) or 0, 3, and 4.8% (wt/wt) was mixed into inoculated brain heart infusion (BHI) broth and ground beef (80% lean), respectively. BSC at concentrations of 1 and 2% did not inhibit growth of the pathogens tested in BHI broth. E. coli O157:H7 in BHI broth with 4.8% BSC was significantly reduced (p<0.05) by 3~4 log CFU/mL compared with the control for up to 4 days. At 4.8%, BSC treatment of ground beef most significantly reduced (p<0.05) total aerobic count and E. coli O157:H7 by 2.1 and 2.0 log CFU/g, respectively. This study indicates that the legally allowable level of 1.3% (wt/wt) BSC is not effective for reducing the pathogens tested in ground beef stored at $7^{\circ}C$.

Inhibitory Effects of Chlorine Dioxide and a Commercial Chlorine Sanitizer Against Foodborne Pathogens on Lettuce (양상추에 오염된 병원성 미생물에 대한 Chlorine Dioxide 및 상업적 Chlorine 살균소독제의 저해효과 평가)

  • Choi, Mi-Ran;Lee, Sun-Young
    • Korean journal of food and cookery science
    • /
    • v.24 no.4
    • /
    • pp.445-451
    • /
    • 2008
  • This study compared the effects of chlorine dioxide and a commercial chlorine sanitizer for inhibiting foodborne pathogens, including Salmonella enterica serovar Typhimurium, Listeria monocytogenes, and Escherichia coli O157 : H7, on lettuce leaves. The lettuce samples were inoculated with each cocktail of the three strains, and were then treated with chemical sanitizers [distilled water, 100 ppm commercial chlorine and 50 ppm, 100 ppm, 200 ppm chlorine dioxide ($ClO_2$)] for 1 min, 5 min, and 10 min at room temperature($22{\pm}2^{\circ}C$). Following inoculation of the leaves, initial populations of E. coli O157:H7, L. monocytogenes, and S. Typhimurium were approximately 5.54, 4.47, and 5.12 log CFU/g, respectively these levels were not significantly reduced by the treatment with water,whereas the 100 ppm commercial chlorine sanitizer treatment and $ClO_2$ (at all tested concentrations) were effective at reducing levels of all three pathogens. The treatment of 200 ppm $ClO_2$ for 10 min was most effective at inhibiting the three pathogens, and reduction levels of E. coli O157 : H7, L. monocytogenes, and S. Typhimurium were 2.28, 1.95, 1.76 log, respectively. The inhibitory effect of $ClO_2$ increased with increasing treatment concentration of $ClO_2$, but there was no significant difference by the treatment times. When chemically injured cells of E. coli O157 : H7 and L. monocytogenes and S. Typhimurium were examined by SPRAB and selective overlay methods, respectively, it was observed that the commercial chlorine sanitizer generated greater numbers of injured L. monocytogenes than the $ClO_2$ treatment. From the overall results, $ClO_2$ was more effective at inhibiting pathogenic bacteria compared to the commercial chlorine sanitizer therefore, it has potential to be utilized as an alternative sanitizer to increase the microbial safety of fresh produce.