• 제목/요약/키워드: Food expression

검색결과 2,839건 처리시간 0.028초

Ethanol Extract of Oenanthe javanica Modulates Inflammatory Response by Inhibiting NF-${\kappa}B$ Mediated Cyclooxygenase-2 Expression in RAW 264.7 Macrophage

  • Lee, Jeong-Min;Kim, Nam-Joo;Cho, Dong-Hyeok;Chung, Min-Young;Hwang, Kwon-Tack;Kim, Hyun-Ji;Jun, Woo-Jin;Park, Chang-Soo
    • Food Science and Biotechnology
    • /
    • 제15권2호
    • /
    • pp.303-307
    • /
    • 2006
  • Effect of Oenanthe javanica ethanol extract (OJE) on nuclear factor-${\kappa}B$ (NF-${\kappa}B$)-mediated inflammatory reaction in RAW 264.7 macrophage cells was investigated. The OJE dose-dependently inhibited secretions of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and prostaglandins $E_2\;(PGE_2)$ from lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and blocked LPS-induced expression of cyclooxygenase-2. To clarify mechanistic basis for its inhibitions of NF-${\kappa}B$ and activator protein-1 (AP-1) activations, effects of OJE on activations of NF-${\kappa}B$ and AP-1 genes by luciferase reporter activity were examined. The LPS-stimulated activations of NF-${\kappa}B$ and AP-1 were significantly blocked by 400 and $600\;{\mu$}g/mL of OJE, implicating that OJE might regulate gene expression through more than one signaling pathway. Cytosolic degradation of I-${\kappa}B{\alpha}$ was inhibited by OJE dose-dependently, indicating that the nuclear translocation of p65 was inhibited by OJE. These findings suggest that the inhibition of LPS-stimulated COX-2 expression by OJE is due to its inhibition of NF-${\kappa}B$ activation by blocking I-${\kappa}B{\alpha}$ degradation, which may be mechanistic basis of anti-inflammatory effects of OJE.

Identification and Characterization of Genes Differentially Expressed in the Resistance Reaction in Wheat Infected with Tilletia tritici, the Common Bunt Pathogen

  • Lu, Zhen-Xiang;Gaudet, Denis A.;Frick, Michele;Puchalski, Byron;Genswein, Bernie;Laroche, Andre
    • BMB Reports
    • /
    • 제38권4호
    • /
    • pp.420-431
    • /
    • 2005
  • The differentially virulent race T1 of common bunt (Tilletia tritici) was used to inoculate the wheat lines Neepawa (compatible) and its sib BW553 (incompatible) that are nearly isogenic for the Bt-10 resistance gene. Inoculated crown tissues were used to construct a suppression subtractive hybridization (SSH) cDNA library. Of the 1920 clones arrayed from the SSH cDNA library, approximately 10% were differentially regulated. A total of 168 differentially up-regulated and 25 down-regulated genes were identified and sequenced; 71% sequences had significant homology to genes of known function, of which 59% appeared to have roles in cellular metabolism and development, 24% in abiotic/biotic stress responses, 3% involved in transcription and signal transduction responses. Two putative resistance genes and a transcription factor were identified among the up regulated sequences. The expression of several candidate genes including a lipase, two non-specific lipid transfer proteins (ns-LTPs), and several wheat pathogenesis-related (PR)-proteins, was evaluated following 4 to 32 days post-inoculation in compatible and incompatible interactions. Results confirmed the higher overall expression of these genes in resistant BW553 compared to susceptible Neepawa, and the differential up-regulation of wheat lipase, chitinase and PR-1 proteins in the expression of the incompatible interaction.

Anti-inflammatory effect of methanol extract from Erigeron Canadensis L. may be involved with upregulation of heme oxygenase-1 expression and suppression of $NF{\kappa}B$ and MAPKs activation in macrophages

  • Sung, Jeehye;Sung, Misun;Kim, Younghwa;Ham, Hyeonmi;Jeong, Heon-Sang;Lee, Junsoo
    • Nutrition Research and Practice
    • /
    • 제8권4호
    • /
    • pp.352-359
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: In this study, we determined the anti-inflammatory activities and the underlying molecular mechanisms of the methanol extract from Erigeron Canadensis L. (ECM) in LPS-stimulated RAW264.7 macrophage cells. MATERIALS/METHODS: The potential anti-inflammatory properties of ECM were investigated by using RAW264.7 macrophages. We used western blot assays and real time quantitative polymerase chain reaction to detect protein and mRNA expression, respectively. Luciferase assays were performed to determine the transactivity of transcription factors. RESULTS: ECM significantly inhibited inducible nitric oxide synthase (iNOS)-derived NO and cyclooxygenase-2 (COX-2) derived PGE2 production in LPS-stimulated RAW264.7 macrophages. These inhibitory effects of ECM were accompanied by decreases in LPS-induced nuclear translocations and transactivities of $NF{\kappa}B$. Moreover, phosphorylation of mitogen-activated protein kinase (MAPKs) including extracellular signal-related kinase (ERK1/2), p38, and c-jun N-terminal kinase (JNK) was significantly suppressed by ECM in LPS-stimulated RAW264.7 macrophages. Further studies demonstrated that ECM by itself induced heme oxygenase-1 (HO-1) protein expression at the protein levels in dose-dependent manner. However, zinc protoporphyrin (ZnPP), a selective HO-1 inhibitor, abolished the ECM-induced suppression of NO production. CONCLUSIONS: These results suggested that ECM-induced HO-1 expression was partly responsible for the resulting anti-inflammatory effects. These findings suggest that ECM exerts anti-inflammatory actions and help to elucidate the mechanisms underlying the potential therapeutic values of Erigeron Canadensis L.

Korean Red Ginseng and Korean black ginseng extracts, JP5 and BG1, prevent hepatic oxidative stress and inflammation induced by environmental heat stress

  • Song, Ji-Hyeon;Kim, Kui-Jin;Chei, Sungwoo;Seo, Young-Jin;Lee, Kippeum;Lee, Boo-Yong
    • Journal of Ginseng Research
    • /
    • 제44권2호
    • /
    • pp.267-273
    • /
    • 2020
  • Background: Continuous exposure to high temperatures can lead to heat stress. This stress response alters the expression of multiple genes and can contribute to the onset of various diseases. In particular, heat stress induces oxidative stress by increasing the production of reactive oxygen species. The liver is an essential organ that plays a variety of roles, such as detoxification and protein synthesis. Therefore, it is important to protect the liver from oxidative stress caused by heat stress. Korean ginseng has a variety of beneficial biological properties, and our previous studies showed that it provides an effective defense against heat stress. Methods: We investigated the ability of Korean Red Ginseng and Korean black ginseng extracts (JP5 and BG1) to protect against heat stress using a rat model. We then confirmed the active ingredients and mechanism of action using a cell-based model. Results: Heat stress significantly increased gene and protein expression of oxidative stress-related factors such as catalase and SOD2, but treatment with JP5 (Korean Red Ginseng extract) and BG1 (Korean black ginseng extract) abolished this response in both liver tissue and HepG2 cells. In addition, JP5 and BG1 inhibited the expression of inflammatory proteins such as p-NF-κB and tumor necrosis factor alpha-α. In particular, JP5 and BG1 decreased the expression of components of the NLRP3 inflammasome, a key inflammatory signaling factor. Thus, JP5 and BG1 inhibited both oxidative stress and inflammation. Conclusions: JP5 and BG1 protect against oxidative stress and inflammation induced by heat stress and help maintain liver function by preventing liver damage.

Determination of Fat Accumulation Reduction by Edible Fatty Acids and Natural Waxes In Vitro

  • Issara, Utthapon;Park, Suhyun;Park, Sungkwon
    • 한국축산식품학회지
    • /
    • 제39권3호
    • /
    • pp.430-445
    • /
    • 2019
  • Natural edible waxes mixed with plant oils, containing high levels of unsaturated fatty acids (FAs), are known as oleogels. Oleogels are used for replacing saturated FAs in animal-derived food with unsaturated FAs. However, the health effects of edible waxes are not yet clearly defined. The purpose of this study was to investigate the effect of FAs and natural waxes on the adipogenesis in 3T3-L1 cells. The 3T3-L1 cells were differentiated and treated with FAs and waxes. These FAs [Palmitic acid (PA), Stearic acid (SA), Oleic acid (OA), Linoleic acid (LA), and Alpha-linolenic acid (ALA)] and waxes [beeswax (BW) and carnauba wax (CW)] were prepared at varying concentrations, and cell toxicity, triglyceride accumulation, lipid droplets size, and distribution inside of cells were determined. Adipogenic gene expression including $PPAR{\gamma}$, FASN, $C/EBP{\alpha}$, SREBP-1, and CPT-1 was determined. Results showed that increasing the concentration of FAs and waxes led to a decrease in the adipocyte cells viability and metabolic performance. SA showed the highest level of triglyceride accumulation (p<0.05), whereas ALA showed the lowest (p<0.05). Both BW and CW at 3.0 ppm showed significantly higher lipid accumulation than in the control and other groups (p<0.05). ALA had significantly downregulated adipogenic gene expression levels, excluding those of CPT-1, compared to the other treatment groups (p<0.05). Moreover, BW demonstrated similar adipogenic gene expression levels as ALA compared to CW. Consequently, ALA and BW may have health benefits by reducing adipogenesis and can be used in processed meat.

종양괴사인자(TNF)가 ME-180 사람 경부 암종세포에서 종양 발생 유전자의 발현에 미치는 영향 (Effect of Tumor Necrosis Factor-${\alpha}$(TNF) on the Expression of Oncogenes in ME-180 Human Cervical Carcinoma Cells)

  • 한형미;김형수;손경희;최경백;정승태;김진호;이병무;김주일
    • 약학회지
    • /
    • 제41권5호
    • /
    • pp.629-637
    • /
    • 1997
  • Tumor necrosis factor-${alpha}$ (TNF) induced a cytotoxic response in ME-180 cervical carcinoma cells in vitro. This cytotoxic response was accompanied by a temporal series of mitogenic stimuli : increased c-fos, c-jun and jun-B expression. Depletion of protein kinase C (PKC) by exposure of ME-180 cells to 100ng/ml phorbol myristate acetate (PMA) for 24hours almost completely abolished TNF-mediated increase in these signals, indicating that a PKC-dependent pathway is involved in TNF-mediated increases in the expression of c-fos, c-jun and jun-B. Characteristics of TNF receptors after exposure to 100ng/ml PMA or 24hours were not altered, suggesting that diminished induction of these oncogenes by TNF after PMA treatment is not due to any changes at the receptor level. To examine whether a PKC-dependent pathway is involved in TNF-mediated cytotoxicity in ME-180 cells, cytotoxicity was measured after depletion of PKC. No apparent changes in cytototoxicity after PKC depletion suggest that a PKC-dependent pathway is not involved in TNF-mediated cytotoxicity. Furthermore, results from cytotoxicity tests after exposure to staurosporine (PKC inhibitor) did not show any changes in the TNF-mediated cytotoxicity, confirming that a PKC-dependent pathway is not involved in this process. These data indicate that 1) TNF induces expression of c-fos, c-jun and jun-B oncogenes via a PKC-dependent pathway and 2) PKC-dependent expression of these three oncogenes by TNF may not be involved in TNF-mediated cytotoxicity in ME-180 cells.

  • PDF

Cloning of Phospholipase D from Grape Berry and Its Expression under Heat Acclimation

  • Wan, Si-Bao;Wang, Wei;Wen, Peng-Fei;Chen, Jian-Ye;Kong, Wei-Fu;Pan, Qiu-Hong;Zhan, Ji-Cheng;Tian, Li;Liu, Hong-Tao;Huang, Wei-Dong
    • BMB Reports
    • /
    • 제40권4호
    • /
    • pp.595-603
    • /
    • 2007
  • To investigate whether phospholipase D (PLD, EC 3.1.4.4) plays a role in adaptive response of post-harvest fruit to environment, a PLD gene was firstly cloned from grape berry (Vitis Vinifera L. cv. Chardonnay) using RT-PCR and 3'- and 5'-RACE. The deduced amino acid sequence (809 residues) showed 84.7% identity with that of PLD from Ricinus communis. The secondary structures of this protein showed the characteristic C2 domain and two active sites of a phospholipid-metabolizing enzyme. The PLD activity and its expression in response to heat acclimation were then assayed. The results indicated PLD was significantly activated at enzyme activity, as well as accumulation of PLD mRNA and synthesis of new PLD protein during the early of heat acclimation, primary suggesting that the grape berry PLD may be involved in the heat response in post-harvest grape berry. This work offers an important basis for further investigating the mechanism of post-harvest fruit adaptation to environmental stresses.

식이 Capsaicin이 마우스의 주요 장기조직에서의 Proto-oncogenes Expression에 미치는 영향 (Effect of Dietary Capsaicin on Proto-oncogenes Expression in Various in Mice)

  • 김정미;한인섭;김병삼;유리나
    • 한국식품영양과학회지
    • /
    • 제25권6호
    • /
    • pp.1024-1030
    • /
    • 1996
  • 매운맛 성분(capsaicin, CAP)이 암발생에 미치는 영향에 대한 분자적인 수준에서의 기초 정보를 확보하기 위해, 식이 CAP의 투여가 동물 조직 중 proto-oncogene 의 발현에 미치는 영향을 조사하였다. ICR mouse를 4 group으로 분류하여 각각 식이CAP 농도가 0, 5, 20, 100ppm이 되도록 조제한 먹이로 4주 동안 사육하였다. 사육기간 종료 후 동물들의 중요장기를 적출하여 total RNA를 분리하고, proto-oncogene(c-jun, c-myc, H-ras, erbB, p53)의 발현 수준을 slot blot hybridization assay를 통해 살펴 보았다. 이때, control probe로는 18SrRNA를 사용하였다. 그 결과, c-jun proto-oncogene의 발현은 각 주요 장기조직에 따라 다른 양상을 나타내었는데, 식이CAP 투여량이 증가함에 따라 간과 신장에서 그 발현이 증가하며, 위에서는 CAP 20ppm까지는 c-jun의 발현이 증가하다. 100ppm 투여시에는 감소하는 것으로 나타났으며, 비장에서는 식이CAP 투여량이 증가함에 따라 감소하는 경향을 보였다. 한편, tumor suppressor gene인 p53의 경우, 간에서만 CAP 20, 100ppm 처리시 약하게 발현되었다. 이들 결과로 보아, 식이 CAP에 의한 proto-oncogene의 발현은 CAP 투여량에 따라 그 정도를 달리하며, 그 발현 정도는 조직 특이성을 나타내는 것으로 평가된다.

  • PDF

Analysis of Salmonella Pathogenicity Island 1 Expression in Response to the Changes of Osmolarity

  • LIM, SANG-YONG;YONG, KYEONG-HWA;RYU, SANG-RYEOL
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.175-182
    • /
    • 2005
  • Abstract Salmonella pathogenicity island 1 (SPI1) gene expression is regulated by many environmental signals such as oxygen, osmolarity, and pH. Here, we examined changes in the expression level of various regulatory proteins encoded within SPI1 in response to three different concentrations of NaCl, using primer extension analysis. Transcription of all the regulatory genes tested was activated most when Salmonella were grown in Luria Broth (LB) containing 0.17 M NaCl. The expression of hilA, invF, and hilD was decreased in the presence of 0.47 M NaCl or in the absence of NaCl, while hilC expression was almost constant regardless of the NaCl concentration when Salmonella were grown to exponential phase under low-oxygen condition. The reduced expression of hilA, invF, and hilD resulted in lower invasion of hilC mutant to the cultured animal cells when the mutant was grown in the presence of 0.47 M NaCl or in the absence of NaCl prior to infection. Among the proteins secreted via the SPI1-type III secretion system (TTSS), the level of sopE2 expression was not influenced by medium osmolarity. Various effects of osmolarity on virulence gene regulation observed in this study is one example of multiple regulatory pathways used by Salmonella to cause infection.

Peste des petits ruminants virus infection induces endoplasmic reticulum stress and apoptosis via IRE1-XBP1 and IRE1-JNK signaling pathways

  • Shuyi Yuan;Yanfen Liu;Yun Mu;Yongshen Kuang;Shaohong Chen;Yun-Tao Zhao;You Liu
    • Journal of Veterinary Science
    • /
    • 제25권2호
    • /
    • pp.21.1-21.15
    • /
    • 2024
  • Background: Peste des petits ruminants (PPR) is a contagious and fatal disease of sheep and goats. PPR virus (PPRV) infection induces endoplasmic reticulum (ER) stress-mediated unfolded protein response (UPR). The activation of UPR signaling pathways and their impact on apoptosis and virus replication remains controversial. Objectives: To investigate the role of PPRV-induced ER stress and the IRE1-XBP1 and IRE1-JNK pathways and their impact on apoptosis and virus replication. Methods: The cell viability and virus replication were assessed by 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, immunofluorescence assay, and Western blot. The expression of ER stress biomarker GRP78, IRE1, and its downstream molecules, PPRV-N protein, and apoptosis-related proteins was detected by Western blot and quantitative reverse transcription-polymerase chain reaction, respectively. 4-Phenylbutyric acid (4-PBA) and STF-083010 were respectively used to inhibit ER stress and IRE1 signaling pathway. Results: The expression of GRP78, IRE1α, p-IRE1α, XBP1s, JNK, p-JNK, caspase-3, caspase-9, Bax and PPRV-N were significantly up-regulated in PPRV-infected cells, the expression of Bcl-2 was significantly down-regulated. Due to 4-PBA treatment, the expression of GRP78, p-IRE1α, XBP1s, p-JNK, caspase-3, caspase-9, Bax, and PPRV-N were significantly downregulated, the expression of Bcl-2 was significantly up-regulated. Moreover, in PPRV-infected cells, the expression of p-IRE1α, p-JNK, Bax, and PPRV-N was significantly decreased, and the expression of Bcl-2 was increased in the presence of STF-083010. Conclusions: PPRV infection induces ER stress and IRE1 activation, resulting in apoptosis and enhancement of virus replication through IRE1-XBP1s and IRE1-JNK pathways.