• Title/Summary/Keyword: Follicle-stimulating hormone receptor (FSHR)

Search Result 14, Processing Time 0.026 seconds

Three-Dimensional Structure Prediction of Follicle-Stimulating Hormone Receptor Transmembrane Domain by Homology Modelling

  • Priya dharshini B
    • Journal of Integrative Natural Science
    • /
    • v.16 no.1
    • /
    • pp.33-38
    • /
    • 2023
  • The follicle stimulating hormone receptor (FSHR) is a glycoprotein hormone, that belongs to the GPCR superfamily. FSHR plays a major role in reproduction. The aberrant activation of FHS receptor leads to infertility and several reproductive disorders. The recently recognized roles of the FSHR in diverse extragonadal tissues is also closely related to Alzheimer's disease and cancers. Analysing the structural characteristics of the receptor is important in understanding the pathophysiology of diseases associated with the receptor. In this present study, homology modelling of FSHR-TM domain was developed using four different templates. Totally 20 models were developed using single template-based approach and selected three based on the validation of RC plot, RMSD, ProSA, QMEAN and ERRAT values. The developed models would be useful for further research on the structural characteristics and binding characteristics of the FSHR-TM domain.

The C-terminal Phosphorylation Sites of eel Follicle-Stimulating Hormone Receptor are Important Role in the Signal Transduction

  • Kim, Jeong-Min;Byambaragchaa, Munkhzaya;Kang, Myung-Hwa;Min, Kwan-Sik
    • Development and Reproduction
    • /
    • v.22 no.2
    • /
    • pp.143-153
    • /
    • 2018
  • The large extracellular domain of glycoprotein hormone receptors is a unique feature within the G protein-coupled receptors (GPCRs) family. After interaction with the hormone, the receptor becomes coupled to Gs, which, in turn stimulates adenylyl cyclase and the production of cAMP. Potential phosphorylation sites exist in the C-terminal region of GPCRs. The experiments described herein represent attempts to determine the functions of the eel follicle-stimulating hormone receptor (eelFSHR). We constructed a mutant of eelFSHR, in which the C-terminal cytoplasmic tail was truncated at residue 614 (eelFSHR-t614). The eelFSHR-t614 lacked all potential phosphorylation sites present in the C-terminal region of eelFSHR. In order to obtain the eelFSHR ligand, we produced recombinant follicle-stimulating hormone ($rec-eelFSH{\beta}/{\alpha}$) in the CHO-suspension cells. The expression level was 2-3 times higher than that of the transient expression of eelFSH in attached CHO-K1 cells. The molecular weight of the $rec-eelFSH{\beta}/{\alpha}$ protein was identified to be approximately 34 kDa. The cells expressing eelFSHR-t614 showed an increase in agonist-induced cAMP responsiveness. The maximal cAMP responses of cells expressing eelFSHR-t614 were lower than those of cells expressing eelFSHR-wild type (eelFSHR-WT). The $EC_{50}$ following C-terminal deletion in CHO-K1 cells was approximately 60.4% of that of eelFSHR-WT. The maximal response in eelFSHR-t614 cells was also drastically lower than that of eelFSHR-WT. We also found similar results in PathHunter Parental cells expressing ${\beta}$-arrestin. Thus, these data provide evidence that the truncation of the C-terminal cytoplasmic tail phosphorylation sites in the eelFSHR greatly decreased cAMP responsiveness and maximal response in both CHO-K1 cells and Path-Hunter Parental cells expressing ${\beta}$-arrestin.

Functional characterization of naturally-occurring constitutively activating/inactivating mutations in equine follicle-stimulating hormone receptor

  • Byambaragchaa, Munkhzaya;Ahn, Tae-Young;Choi, Seung-Hee;Kang, Myung-Hwa;Min, Kwan-Sik
    • Animal Bioscience
    • /
    • v.35 no.3
    • /
    • pp.399-409
    • /
    • 2022
  • Objective: Follicle-stimulating hormone (FSH) is the central hormone involved in mammalian reproduction, maturation at puberty, and gamete production that mediates its function by control of follicle growth and function. The present study investigated the mutations involved in the regulation of FSH receptor (FSHR) activation. Methods: We analyzed seven naturally-occurring mutations that were previously reported in human FSHR (hFSHR), in the context of equine FSHR (eFSHR); these include one constitutively activation variant, one allelic variant, and five inactivating variants. These mutations were introduced into wild-type eFSHR (eFSHR-wt) sequence to generate mutants that were designated as eFSHR-D566G, -A306T, -A189V, -N191I, -R572C, -A574V, and -R633H. Mutants were transfected into PathHunter EA-parental CHO-K1 cells expressing β-arrestin. The biological function of mutants was analyzed by quantitating cAMP accumulation in cells incubated with increasing concentrations of FSH. Results: Cells expressing eFSHR-D566G exhibited an 8.6-fold increase in basal cAMP response, as compared to that in eFSHR-wt. The allelic variation mutant eFSHR-A306T was not found to affect the basal cAMP response or half maximal effective concentration (EC50) levels. On the other hand, eFSHR-D566G and eFSHR-A306T displayed a 1.5- and 1.4-fold increase in the maximal response, respectively. Signal transduction was found to be completely impaired in case of the inactivating mutants eFSHR-A189V, -R572C, and -A574V. When compared with eFSHR-wt, eFSHR-N191I displayed a 5.4-fold decrease in the EC50 levels (3,910 ng/mL) and a 2.3-fold decrease in the maximal response. In contrast, cells expressing eFSHR-R633H displayed in a similar manner to that of the cells expressing the eFSHR-wt on signal transduction and maximal response. Conclusion: The activating mutant eFSHR-D566G greatly enhanced the signal transduction in response to FSH, in the absence of agonist treatment. We suggest that the state of activation of the eFSHR can modulate its basal cAMP accumulation.

Signal transduction of C-terminal phosphorylation sites for equine follicle stimulating hormone receptor (eFSHR)

  • Seong, Hoon-Ki;Choi, Seung-Hee;Byambaragchaa, Munkhzaya;Min, Kwan-Sik
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.155-162
    • /
    • 2020
  • Equine follicle stimulating hormone receptor (eFSHR) has a large extracellular domain and an intracellular domain containing approximately 10 phosphorylation sites within the G protein-coupled receptor. This study was conducted to analyze the function of phosphorylation sties at the eFSHR C-terminal region. We constructed a mutant of eFSHR, in which the C-terminal cytoplasmic tail was truncated at residue 641 (eFSHR-t641). This removed 10 potential phosphorylation sites from the C-terminal region of the intracellular loop. The eFSHR-wild type (eFSHR-wt) and eFSHR-t641 cDNAs were subcloned into the pCMV-ARMS1-PK2 expression vector. These plasmids were transfected into PathHunter CHO-K1 Parental cells expressing β-arrestin 2 enzyme acceptor fusion protein and analyzed for agonist-induced cAMP response. The cAMP response in cells expressing eFSHR-t641 was lower than the response in cells expressing eFSHR-wt. EC50 values of eFSHR-wt and eFSHR-t641 were 1079 ng/mL and 1834 ng/mL, respectively. eFSHR-t641 was approximately 0.58-fold compared with that of eFSHR-wt. The maximal response in eFSHR-wt and eFSHR-t641 was 24.7 nM and 16.7 nM, respectively. The Rmax value of phosphorylation sites in eFSHR-t641 was also decreased to approximately 68.4% of that in eFSHR-wt. The collective data implicate that the phosphorylation sites in the eFSHR C-terminal region have a pivotal role in signal transduction in PathHunter CHO-K1 cells, and indicate that β-arrestin is involved in coupling the activated receptors to the internalization system.

Association of single-nucleotide polymorphisms in the ESR2 and FSHR genes with poor ovarian response in infertile Jordanian women

  • Sindiani, Amer Mahmoud;Batiha, Osamah;Al-zoubi, Esra'a;Khadrawi, Sara;Alsoukhni, Ghadeer;Alkofahi, Ayesha;Alahmad, Nour Alhoda;Shaaban, Sherin;Alshdaifat, Eman;Abu-Halima, Masood
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.1
    • /
    • pp.69-79
    • /
    • 2021
  • Objective: Poor ovarian response (POR) refers to a subnormal follicular response that leads to a decrease in the quality and quantity of the eggs retrieved after ovarian stimulation during assisted reproductive treatment (ART). The present study investigated the associations of multiple variants of the estrogen receptor 2 (ESR2) and follicle-stimulating hormone receptor (FSHR) genes with POR in infertile Jordanian women undergoing ART. Methods: Four polymorphisms, namely ESR2 rs1256049, ESR2 rs4986938, FSHR rs6165, and FSHR rs6166, were investigated in 60 infertile Jordanian women undergoing ART (the case group) and 60 age-matched fertile women (the control group), with a mean age of 33.60±6.34 years. Single-nucleotide polymorphisms (SNPs) were detected by restriction fragment length polymorphism and then validated using Sanger sequencing. Results: The p-value of the difference between the case and control groups regarding FSHR rs6166 was very close to 0.05 (p=0.054). However, no significant differences were observed between the two groups in terms of the other three SNPs, namely ESR2 rs1256049, ESR2 rs4986938, and FSHR rs6165 (p=0.561, p=0.433, and p=0.696, respectively). Conclusion: The association between FSHR rs6166 and POR was not statistically meaningful in the present study, but the near-significant result of this experiment suggests that statistical significance might be found in a future study with a larger number of patients.

Signal Transduction of Equine Follicle-Stimulating Hormone Receptor (eFSHR) by rec-eelFSHβ/α, Natural Porcine FSH, and Natural Human FSH

  • Byambaragchaa, Munkhzaya;Kim, Dae-Jung;Kang, Myung-Hwa;Min, Kwan-Sik
    • Reproductive and Developmental Biology
    • /
    • v.42 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • In this study, we analyzed signal transduction by equine follicle-stimulating hormone receptor (eFSHR) on sti- mulation with recombinant $eelFSH{\beta}/{\alpha}$ ($rec-eelFSH{\beta}/{\alpha}$), natural porcine FSH (pFSH), and natural human FSH (hFSH). cAMP stimulation in CHO-K1 cells expressing eFSHR was determined upon exposure to different doses (0-1450 ng/mL) of these hormones. The $EC_{50}$ value of $rec-eelFSH{\beta}/{\alpha}$ was 53.35 ng/mL. The Rmax values of $rec-eelFSH{\beta}/{\alpha}$ and pFSH were 28.12 and 2.88 ng/mL, respectively. The activity of $rec-eelFSH{\beta}/{\alpha}$ was much higher than that of natural pFSH. However, signal transduction in CHO PathHunter Parental cells expressing eFSHR was not enhanced by stimulation with natural hFSH. Thus, $rec-eelFSH{\beta}/{\alpha}$ was completely active in cells expressing eFSHR. However, natural hFSH did not invoke a signal response in cells expressing eFSHR. Particularly, natural pFSH was weakly active in the same cells. These results showed that $eelFSH{\beta}/{\alpha}$ has potent activity in cells expressing eFSHR. Thus, $rec-eelFSH{\beta}/{\alpha}$ may efficiently bind to eFSHR, where as natural hFSH does not bind to eFSHR.

Relationship between Differential Expression of Estrogen Receptor and Follicle Stimulating Hormone Receptor Genes in Ovary and Heterosis of Egg Number Traits in Chickens

  • Wang, Hui;Sun, Dongxiao;Yu, Ying;Wang, Dong;Zhang, Yi;Zhang, Yuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.3
    • /
    • pp.325-330
    • /
    • 2008
  • In order to understand the molecular mechanism of heterosis of reproduction traits in chickens, we used the quantitative real-time reverse transcriptional polymerase chain reaction (Quantitative real-time RT-PCR) technique to investigate the differential expression of estrogen receptor (ESR) and follicle stimulating hormone receptor (FSHR) genes in 32-week-old ovaries of inbred chickens and their hybrid offspring in $4{\times}4$ diallel crosses, which involved White Plymouth Rock (E), CAU Brown (D), Silkies (C) and White Leghorn (A). We found that there were significant differences in mRNA expression of ESR and FSHR genes not only between hybrids and their parental lines (p<0.01), but also among different crosses (p<0.01). Furthermore, positive correlations between differential expression of both ESR and FHSR in hybrids and heterosis percentages of 32-week-old and 42-week-old egg number traits were significant at p<0.05. Our results suggested that differential expression of ESR and FSHR genes in the ovaries of inbred chickens and their hybrids could play roles in the formation of heterosis of egg number traits to some extent.

Characterization of Constitutively Activating Eel Follicle-Stimulating Hormone Receptor

  • Kim, Jeong-Soo;Byambaragchaa, Munkhzaya;Min, Kwan-Sik
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.267-271
    • /
    • 2019
  • This study aimed to investigate the function of the constitutively activating mutation D540G on eel FSHR activity by in vitro functional studies. Site-directed mutagenesis was carried out to generate the D-to-G mutation at position 540 of the pcDNA3-eel FSHR construct. Vectors expressing either wild type or mutant receptor were transfected into Chinese hamster ovary (CHO-K1) cells. The functional characteristics of both the wild type and mutant receptors were analyzed by a cAMP assay. cAMP accumulation was highly increased in cells transfected with the D540G mutant receptor in a dose-dependent manner. Of note, basal cAMP levels were remarkably increased (~13.1-fold) with expression of this mutant when compared to wild type receptor. These findings suggest that the D540G mutation in the eel FSHR may contribute to ovulation during eel sex maturation as well as play a pivotal role in inducing FSHR activity.

Signal Transduction of Eel Luteinizing Hormone Receptor (eelLHR) and Follicle Stimulating Hormone Receptor (eelFSHR) by Recombinant Equine Chorionic Gonadotropin (rec-eCG) and Native eCG

  • Byambaragchaa, Munkhzaya;Lee, So-Yun;Kim, Dae-Jung;Kang, Myung-Hwa;Min, Kwan-Sik
    • Development and Reproduction
    • /
    • v.22 no.1
    • /
    • pp.55-64
    • /
    • 2018
  • Previous studies showed that recombinant equine chorionic gonadotropin ($rec-eCG{\beta}/{\alpha}$) exhibits both follicle-stimulating hormone (FSH) and luteinizing hormone (LH)-like activities in rat LHR- and FSHR-expressing cells. In this study, we analyzed signal transduction by eelFSHR and eelLHR upon stimulation with $rec-eCG{\beta}/{\alpha}$ and native eCG. The cyclic adenosine monophosphate (cAMP) stimulation in CHO-K1 cells expressing eelLHR was determined upon exposure to different doses (0-1,450 ng/mL) of $rec-eCG{\beta}/{\alpha}$ and native eCG. The $EC_{50$ values of $rec-eCG{\beta}/{\alpha}$ and native eCG were 172.4 and 786.6 ng/mL, respectively. The activity of $rec-eCG{\beta}/{\alpha}$ was higher than that of native eCG. However, signal transduction in the CHO PathHunter Parental cells expressing eelFSHR was not enhanced by stimulation with both agonist $rec-eCG{\beta}/{\alpha}$ and native eCG. We concluded that $rec-eCG{\beta}/{\alpha}$ and native eCG were completely active in cells expressing eelLHR, similar to the activity in the mammalian cells expressing LHRs. However, $rec-eCG{\beta}/{\alpha}$ and native eCG did not invoke any signaling response in the cells expressing eelFSHR. These results suggest that eCG has a potent activity in cells expressing eelLHR. Thus, we also suggest that $rec-eCG{\beta}/{\alpha}$ can induce eel maturation by administering gonadotropic reagents (LH), such as salmon pituitary extract.

Internalization of Rat FSH and LH/CG Receptors by rec-eCG in CHO-K1 Cells

  • Park, Jong-Ju;Seong, Hun-Ki;Kim, Jeong-Soo;Munkhzaya, Byambaragchaa;Kang, Myung-Hwa;Min, Kwan-Sik
    • Development and Reproduction
    • /
    • v.21 no.2
    • /
    • pp.111-120
    • /
    • 2017
  • Equine chorionic gonadotropin (eCG) is a unique molecule that elicits the response characteristics of both follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in other species. Previous studies from this laboratory had demonstrated that recombinant eCG (rec-eCG) from Chinese hamster ovary (CHO-K1) cells exhibited both FSH- and LH-like activity in rat granulosa and Leydig cells. In this study, we analyzed receptor internalization through rec-eCGs, wild type eCG ($eCG{\beta}/{\alpha}$) and mutant eCG ($eCG{\beta}/{\alpha}{\Delta}56$) with an N-linked oligosaccharide at $Asn^{56}$ of the ${\alpha}-subunit$. Both the rec-eCGs were obtained from CHO-K1 cells. The agonist activation of receptors was analyzed by measuring stimulation time and concentrations of rec-eCGs. Internalization values in the stably selected rat follicle-stimulating hormone receptor (rFSHR) and rat luteinizing/chorionic gonadotropin receptor (rLH/CGR) were highest at 50 min after stimulation with 10 ng of $rec-eCG{\beta}/{\alpha}$. The dose-dependent response was highest when 10 ng of $rec-eCG{\beta}/{\alpha}$ was used. The deglycosylated $eCG{\beta}/{\alpha}{\Delta}56$ mutant did not enhance the agonist-stimulated internalization. We concluded that the state of activation of rFSHR and rLH/CGR could be modulated through agonist-stimulated internalization. Our results suggested that the eLH/CGRs are mostly internalized within 60 min by agonist-stimulation by rec-eCG. We also suggested that the lack of responsiveness of the deglycosylated $eCG{\beta}/{\alpha}{\Delta}56$ was likely because the site of glycosylation played a pivotal role in agonist-stimulated internalization in cells expressing rFSHR and rLH/CGR.