• Title/Summary/Keyword: Folded Coplanar Waveguide

Search Result 10, Processing Time 0.028 seconds

Coplanar Waveguide Bandpass Filter Using the Folded-line Stepped- Impedance Restorator (접힌 스텝 임피던스 공진기를 이용한 CPW 대역 통과 여파기)

  • 이진택;이창언;신철재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.8A
    • /
    • pp.620-625
    • /
    • 2003
  • The coplanar waveguide bandpass filter using folded-line stepped-impedance resonators(SIRs) is proposed. The folded-line SIR has about λ/8 length using the short-circuited end on coplanar waveguide. It make that the bandpass filter has the half size in comparison with general λ/4 SIR filter. In this paper, we derive the equivalent circuit and design the bandpass filter by using that. We design and fabricate the bandpass filter which has 5 GHz center frequency and 3 % fractional bandwidth. The measurement results fur 4-pole folded SIR bandpass filter agreed well with full-wave simulation and equivalent circuit results. The fabricated bandpass filter has a good spurious characteristic, which the harmonic frequency appeared at 2.5f$\_$0/). The proposed folded-line SIR bandpass filter are applicable for MMIC and High-Tc superconducting filters. bandwidth.

High Pass Filter Design Using Folded Coplanar Waveguide CRLH Transmission Line

  • Yang, Lei;Yang, Doo-Yeong
    • International Journal of Contents
    • /
    • v.11 no.3
    • /
    • pp.63-68
    • /
    • 2015
  • A novel unit cell for a high pass filter was designed based on a composite right/left-handed structure that uses a folded coplanar waveguide. The equivalent circuit model for the unit cell was extracted from the geometry of the unit cell, and the effect of each main parameter of the unit cell was analyzed. The equations to calculate the immittance values of the equivalent circuit elements were formulated, and moreover, the dispersion characteristics and energy the distributions of the electromagnetic fields were simulated to determine the characteristics of the composite right/left-handed structure. Finally, the high pass filters were implemented as a series of the proposed unit cells. We show that the experimental results were in good agreement with those obtained from the simulation. Thus, the high pass filter was found to achieve a baseband insertion loss of 3 dB and a stopband attenuation of 70 dB.

Compact Folded Monopole Antenna Excited by a Conductor-Backed Coplanar Waveguide with Vias

  • Kim, Jin Hyuk;Hwang, Keum Cheol
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.534-537
    • /
    • 2013
  • A compact monopole antenna excited by a conductor-backed coplanar waveguide (CBCPW) is developed for wireless USB dongle applications. The proposed antenna has a compact dimension of $14mm{\times}47.4mm{\times}3.5mm$, which is suitable for a USB dongle housing. A slotted elliptical patch and a CBCPW with vertical vias are employed to achieve a further size reduction and an improved impedance bandwidth. The measurement result demonstrates that the fabricated antenna resonates from 2.25 GHz to 10.9 GHz, which covers all of the important wireless communication bands, including WiBro (2.3 GHz to 2.4 GHz), Bluetooth (2.4 GHz to 2.484 GHz), WiMAX (2.5 GHz to 2.7 GHz and 3.4 GHz to 3.6 GHz), satellite DMB (2.605 GHz to 2.655 GHz), 802.11b/g/a WLAN (2.4 GHz to 2.485 GHz and 5.15 GHz to 5.825 GHz), and ultra-wideband (3.1 GHz to 10.6 GHz) services. The radiation characteristics of the proposed antenna when attached to a laptop are tested to investigate the influence of the keypad and the LCD panel of the laptop.

Design of Planar Type Modified Monopole Antennas (평면형 변형된 모노폴 안테나 설계)

  • Lee, Hyeon-Jin;Jung, Jin-Woo;Lim, Yeong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.7
    • /
    • pp.72-76
    • /
    • 2008
  • In this paper, the several printed square loop antennas which modified monopole antennas are proposed. The proposed antennas are reduced about 20% physical size of antenna and miniaturized reactance value of impedance due to fold center part of the loop. They obtained omni-directional radiation patterns with broad bandwidth and feed method used coplanar waveguide to composed single planar. The proposed antenna bandwidth is about 900MHz($2.63{\sim}3.56GHz]$) resonance frequency on $VSWR{\le}2$. it can be sufficiency of S-DMB band.

Design of Planar Modified Folded Loop Antennas for S-DMB band (위성 DMB 대역을 위한 수정된 폴디드 루프 안테나)

  • Lee, Hyeon-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.1
    • /
    • pp.1-4
    • /
    • 2012
  • In this paper, the planar type modified folded loop antennas for S-DMB band is proposed. The proposed antenna consisted of opened center of a conventional closed loop and folded terminal of microstrip line to inside loop antenna. The sizes proposed antenna was minimized by folding the terminal of the loop. Also, It was minimized reactance value by increasing capacitances between coupled microstrip line. Therefore the proposed antennas compacted about 20% than a conventional loop antenna and increased efficiency of antenna. The proposed antennas got an omni-directional pattern, the antenna gain was 3.67 [dBi] and the bandwidth was 900 MHz (2.6-3.56 GHz) with VSWR${\leq}$2 from the simulated and the measured results. The frequency utilization coefficient was 29.9 %. These properties could satisfy the S-DMB band.

Design of Planar-Type Modified Folded Loop Antennas

  • Park, Sung-Il
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.489-492
    • /
    • 2010
  • This paper proposes the planar-type modified monopole antennas of loop structure. This antenna has an opened center of a conventional closed loop structure with an inside-folded terminal of the loop microstrip line. The size of the proposed antenna was minimized by folding the end of the loop. Also, the reactance value has been minimized by increasing capacitances between the coupled microstrip line. Therefore the proposed antenna has been compacted to about 20% from a conventional loop antenna and has increased its efficiency. The proposed antennas have an omni-directional pattern, the antenna gain was 3.67 [dBi] and the bandwidth was 900 MHz (2.6~3.56 GHz) with VSWR$\leq$2 from the simulated and the measured results. The frequency utilization coefficient was 29.9%. These properties could satisfy the S-DMB band.

A Design of Wide band Dual Folded Microstrip Antennas (광대역 이중 폴디드 마이크로스트립 안테나 설계)

  • 이현진;임영석
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.7
    • /
    • pp.75-79
    • /
    • 2004
  • In this paper, a single plane wide band microstrip antenna for integrated circuit as MMIC and LTCC is designed and fabricated. A new configuration for a wide band microstrip antenna with omni-directional pattern is proposed. This antenna consists of two rectangular folded dipoles, which are fed by a coplanar waveguide(CPW). It was effected stabilization ground that a signal plane of CPW feed have been limited ground plane. Therefore, a ground plane of folded structure should be extended outside folded antenna in this research. The characteristics of the proposed antenna were analyzed by using an FDTD methods. The return loss and radiation patterns were simulated and measured. The proposed antenna is get 120MHz bandwidth of PCS band and 250MHz bandwidth of IMT2000 band, used ISM band.

A Design of Wide-band Folded Dual Monopole Antennas (광대역 폴디드 이중 모노폴 안테나 설계)

  • Lee, Hyeon-Jin;Jung, Jin-Woo;Lim, Yeong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.2
    • /
    • pp.69-75
    • /
    • 2007
  • In this paper, a single plane wide band microstrip antenna for integrated circuit is designed and fabricated. A new configuration for a wide bandwidth is proposed. This antenna consists of two folded microstrip monopoles, which are fed by a coplanar waveguide (CPW). Therefore In this paper is folded terminal part of dual microstrip line for variable reactance value. As a result compared the proposed folded dual microstrip monopole antenna with established dual microstrip monopole antennas, the proposed antenna can widen bandwidth more then about over 1[GHz. The characteristics of the proposed antenna were analyzed by using an FDTD methods. The proposed antenna has $1.98{\sim}4.05GHz$ bandwidth for using ISM, Wibro and DMB band.

Design of Dual-Band Monopole Antenna Fed-by CPW Using Asymmetric Ground Plane (CPW 급전 비대칭 접지면을 이용한 이중 대역 모노폴 안테나 설계)

  • Lee, Sang-Min;Kim, Nam;Lee, Seung-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.7
    • /
    • pp.778-785
    • /
    • 2010
  • The folded monopole antenna for applying mobile communications equipment and wireless devices is presented in this paper. By using the coplanar waveguide feed the operating bandwidth has improved. In addition, each individual resonant elements has occurred different capacitance through asymmetrical left and right ground planes; therefore, the bandwidth has kept and the impedance matching has stabilized. By measurement results, the impedance bandwidth under VSWR< 2.5:1 are $824{\sim}890$ MHz and the $1,500{\sim}2,170$ MHz, also radiation patterns has omni-directional characteristics. The maximum gains of the proposed antenna are 5.52, 0.64, 3.00, 0.94 and 1.85 dBi at 850, 1,575, 1,790, 1,930 and 2,050 MHz respectively. The proposed antenna will be adapted to the internal antenna of the mobile communication devices.

A Design of Printed square Loop Antenna for Omni-diractional Radiation Patterns (전방향 복사페턴의 인쇄형 사각 루-프안테나 설계)

  • 이현진;차상진;임영석
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.11
    • /
    • pp.93-98
    • /
    • 2003
  • In this paper, we designed a printed square loop antenna for operating of PCS and IMT2000 band. The proposed antenna has omni-directional radiation patterns with broad bandwidth, similar to the conventional antenna, to easy feed on composing single planar. We obtain an ideal impedance matching and increase bandwidth. An antenna bandwidth is about 150MHz(1.74∼l.89〔GHz〕) at 1$^{st}$ resonance frequency and 290MHz(1.95∼2.24GHz) at 2$^{nd}$ resonance frequency on VSWR(equation omitted)1.5, and then we can obtain not only 1.73∼l.87 〔GHz〕 PCS band but also 1.92∼2.17 (GHz) IMT2000 band. band.