• 제목/요약/키워드: Foil bearing

검색결과 99건 처리시간 0.024초

겹판 공기베어링의 동특성에 관한 실험적 연구 (An Experimental Investigation on the Dynamic Characteristic of a Multi-leaf Air Bearing)

  • 한동철;김재일
    • 대한기계학회논문집
    • /
    • 제10권3호
    • /
    • pp.399-407
    • /
    • 1986
  • 본 연구에서는 공기역학 탄성베어링의 설계에 필요한 기본이론에 대하여 고찰 하고 그의 신빙성을 그러한 베어링에 지지된 고속회전축의 진등측정을 통하여 검토하 고저 한다. 탄성베어링의 한 예로써 여러 개의 탄성박판이 겹쳐 저어널을 지지하는 겹판베어링(

표면 거칠기가 가스 포일 스러스트 베어링의 성능에 미치는 영향 (Effects of Surface Roughness on the Performance of a Gas Foil Thrust Bearing)

  • 황성호;김대연;김태호
    • Tribology and Lubricants
    • /
    • 제39권2호
    • /
    • pp.81-85
    • /
    • 2023
  • This study presents an experimental investigation of the effects of surface roughness on gas foil thrust bearing (GFTB) performance. A high-speed motor with the maximum speed of 80 krpm rotates a thrust runner and a pneumatic cylinder applies static loads to the test GFTB. When the motor speed increases and reaches a specific speed at which a hydrodynamic film pressure generated within the gap between the thrust runner and test GFTB is enough to support the applied static load, the thrust runner lifts off from the test GFTB and the friction mechanism changes from the boundary lubrication to the hydrodynamic lubrication. The experiment shows a series of lift-off test and load-carrying capacity test for two thrust runners with different surface roughnesses. For a constant static load of 15 N, thrust runner A with its lower surface roughness exhibits a higher start-up torque but lower lift-off torque than thrust runner B with a higher surface roughness. The load capacity test at a rotor speed of 60 krpm reveals that runner A results in a higher maximum load capacity than runner B. Runner A also shows a lower drag torque, friction coefficient, and bearing temperature than runner B at constant static loads. The results imply that maintaining a consistent surface roughness for a thrust runner may improve its static GFTB performance.

외기 온도 증가가 가스 포일 스러스트 베어링의 하중지지 성능과 표면 코팅에 미치는 영향 (Effects of Increasing Ambient Temperatures on the Static Load Performance and Surface Coating of a Gas Foil Thrust Bearing)

  • 조현우;김영우;권용범;김태호
    • Tribology and Lubricants
    • /
    • 제40권3호
    • /
    • pp.103-110
    • /
    • 2024
  • Gas foil thrust bearings (GFTBs) are oil-free self-acting hydrodynamic bearings that support axial loads with a low friction during airborne operation. They need solid lubricants to reduce dry-friction between the runner and top foil and minimize local wears on their surfaces during start-up and shutdown processes. In this study, we evaluate the lift-off speeds and load capacity performance of a GFTB with Polytetrafluoroethylene (PTFE) surface coating by measuring drag torques during a series of experimental tests at increasing ambient temperatures of 25, 75 and 110℃. An electric heat gun provides hot air to the test GFTB operating in the closed booth to increase the ambient temperature. Test results show that the increasing ambient temperature delays the lift-off speed and decreases the load capacity of the test GFTB. An early developed prediction tool well predicts the measured drag torques at 60 krpm. After all tests, post inspections of the surface coating of the top foil are conducted. Scanning electron microscope (SEM) images imply that abrasive wear and oxidation wear are dominant during the tests at 25℃ and 110℃, respectively. A quantitative energy dispersive spectroscopy (EDS) microanalysis reveals that the weight percentages of carbon, oxygen, and nitrogen decrease, while that of fluorine increases significantly during the highest-temperature tests. The study demonstrates that the increasing ambient temperature noticeably deteriorates the static performances and degrades the surface coating of the test GFTB.

차세대 신개념 터보블로워의 세계최초 상품화 개발 (Development of Advanced TurboBlowers Using High-Spped BLDC Motors and Foil Air Bearings)

  • 오종식;이헌석
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.177-182
    • /
    • 2002
  • In the paper, the development of high-speed industrial turbo blowers with foil air bearings is presented as a first successful commercialization in the world. Their target market is various from wastewater treatment to cement factory processes which require compressed air ranging between 0.6 and 0.8 bar gauge. Employing the state-of·the-art technology of the high-speed BLDC motors, the bump-type foil air bearings and the high- efficient turbo impellers/diffusers, so much compact, efficient and silent blower machines of a single stage are now available in the market, aiming to replace the existing inefficient, bulky and noisy ones, such as roots blowers. The first production lines are established fur 25,75 and 150 hp class blowers. Rotational speeds from about 20,000 to 80,000 rpm are realized directly from the high-speed BLDC motors without any gear boxes, and no lubrication oil is required. A brief introduction of design, manufacture and test results is presented fur mechanical, electrical and aerodynamic performance.

  • PDF

공기윤활 다엽포일 제어널 베어링으로 지지된 이단 압축기의 설계 (Design of A two-stage Compressor Supported by Air-lubricated Multi-leaf Foil Journal Bearings)

  • 김태호;이용복;김창호;이남수;김한길
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.936-941
    • /
    • 2001
  • This paper deals with the design of oil-tree motor-driven two-stage centrifugal compressor supported by air-lubricated multi-leaf foil bearings. The design of this compressor is performed, based upon prediction of critical speeds, load capacity, and stability. It is demonstrated in this paper that multi-leaf foil bearings can be adopted to satisfactorily support this centrifugal compressor.

  • PDF

삼성테크윈의 터보식 공기 압축기 소개 (An Introduction of a Turbo Air Compressor in STW)

  • 이형태;이영섭;권우성;문경찬;인배석
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.315-322
    • /
    • 2003
  • High performance turbo compressor, Turbo Master, was successfully developed by applying combined technology and experience based on aero gas turbine engines. The Turbo Master, developed using our own technology, was designed for high performance and reliability And the Turbo Master will supply absolutely oil-free compressed air to your facilities. In special, a next-generation micro compressor was lately developed, using air foil bearing and high speed motor known as the latest high technology.

  • PDF

고속 터어보기계용 공기포일베어링에 대한 동특성과 실험적 연구 (Dynamic Characteristics and Experimental Study on the Foil Bearings for High Speed Turbo Machineries)

  • 황평;권성인
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제27회 춘계학술대회
    • /
    • pp.159-166
    • /
    • 1998
  • 본 연구에서는 공기포일 베어링으로 지지된 로터 베어링 시스템을 구성하고 실험을 수행함으로써 시스템의 진동을 측정하고 그 결과를 해석함으로써 로터 베어링 시스템의 안정성 검토한다. 또, 초기 구동 마찰을 고려하여 공기윤활로만 구동되는 경우와 초기에 베어링 표면에 오일이 도포된 경우를 비교한다. Transient data를 해석 함으로써 로터 베어링 시스템의 startup 및 shutdown에 대한 특성 파악이 가능해지며 시스템의 동적 특성에 대한 더욱 정확한 해석을 가능케한다.

  • PDF

난류 유동을 갖는 가스 포일 저널 베어링의 성능 예측 (Performance Predictions of Gas Foil Journal Bearings with Turbulent Flows)

  • 문진혁;김태호
    • Tribology and Lubricants
    • /
    • 제35권3호
    • /
    • pp.190-198
    • /
    • 2019
  • Gas foil bearings (GFBs) enable small- to medium-sized turbomachinery to operate at ultra-high speeds in a compact design by using ambient air or process gas as a lubricant. When using air or process gas, which have lower viscosity than lubricant oil, the turbomachinery has the advantage of reduced power loss from bearing friction drag. However, GFBs may have high Reynolds number, which causes turbulent flows due to process gas with low viscosity and high density. This paper analyzes gas foil journal bearings (GFJBs) with high Reynolds numbers and studies the effects of turbulent flows on the static and dynamic performance of bearings. For comparison purposes, air and R-134a gas lubricants are applied to the GFJBs. For the air lubricant, turbulence is dominant only at rotor speeds higher than 200 krpm. At those speeds, the journal eccentricity decreases, but the film thickness, power loss, and direct stiffness and damping coefficients increase. On the other hand, the R-134a gas lubricant, which that has much higher density than air, causes dominant turbulence at rotor speeds greater than 10 krpm. The turbulent flow model predicts decreased journal eccentricity but increased film thickness and power loss when compared with the lamina flow model predictions. The vertical direct stiffness and damping coefficients are lower at speeds below 100 krpm, but higher beyond that speeds for the turbulent model. The present results indicate that turbulent flow effects should be considered for accurate performance predictions of GFJBs with high Reynolds number.

볼 베어링 및 가스 포일 베어링으로 지지되는 고속 전동기의 회전체 관성정지 및 가속 성능 연구 (Rotor Coastdown and Acceleration Performances of High-speed Motors Supported on Ball Bearings and Gas Foil Bearings)

  • 문형욱;서정화;김태호
    • Tribology and Lubricants
    • /
    • 제35권2호
    • /
    • pp.123-131
    • /
    • 2019
  • This study characterizes the coastdown performances of two small electric motors supported on high-speed ball bearings (BBs) and gas foil bearings (GFBs), and it predicts their acceleration performances. The two motors have identical permanent magnetic rotors and mating stators. However, the shaft of the GFBs has a larger mass and polar/transverse moments of inertia than that of the BBs. Motor coastdown tests demonstrate that the rotor speed decreases linearly with the BBs and nonlinearly with the GFBs. A simple model for the BBs predicts a constant drag torque and linear decay of speed with time. The test data validate the model predictions. For the GFBs, the hydrodynamic lubrication model predictions reveal that the drag torque increases linearly with speed, and the speed decreases exponentially with time. The predictions agree very well with the test data in the speed range of 100-30 krpm. The boundary lubrication model predicts a constant drag torque and linear decay of speed with time. The predictions agree well with the test data below 15 krpm. Mixed lubrication occurs in the speed range of 30-15 krpm. Rotor acceleration performances are predicted based on the characteristics of deceleration performances. The GFBs require more time to reach 100,000 krpm than the BBs because of their larger shaft polar moment of inertia. However, predictions for the assumed identical polar moment of inertia reveal that the GFBs have a nearly identical acceleration performance to that of the BBs with a motor torque greater than $0.03N{\cdot}m$.