본 논문에서는 조명조건에 영향을 받지 않는 주야간 안개 감지 알고리즘을 제안한다. 주간과 야간 환경에서 안개 특징의 정의와 추출 방법들에 대해 각각 설명한다. 제안된 특징들을 입력으로 사용하는 신경회로망을 중심으로 안개 감지 알고리즘을 소개한다. 본 논문에서 제안하는 알고리즘의 성능은 다양한 환경에서 촬영된 주야간 영상들에 대하여 수행된 실험을 통해 확인하였으며 평균 재현율은 97.5%로 측정되었다.
Acidic fog is catastrophic to aviation and potentially affect materials, vegetation, crops and public health. This paper was carried out to investigate the chemical features of fog sample at Mt. Sobaek (mean sea level : 1, 340m) from June to August 1995. Each sample was analyzed for pH, electrical conductivity and major ions (anion : $Cl^N)_3^-, SO_4^{2-}, cation : Na^+, NH_4^+, K^+, Mg^{2+}, Ca^{2+}$) by ion chromatography. The quality analysis of fog sample data was performed based on ion balance and electrical conductivity method. The wind directions are subdivided into the northerly and southerly wind according to the wind direction data at the Sobaek-san meteorological observation station. Statistical analyses were performed on the complete set of results in order to obtain a description of fog sample. All the statistical treatment was carried out using the SPSS/PC + software package. The major ion concentration of fog samples was higher for the northwesterly wind cases than sourtheasterly wind cases. The pH of fog sample varied between 2.95 and 6.08. The average pH and electrical conductivity of total sample (n=210) were 4.39 and 113.0 $\mu$S/cm, respectively. It may be noted that in nearly all the cases, the dominant major ions in the fog sample at Mt. Sobaek were $SO_4^{2-}, NO_3^-, H^+ and NH_4^+$.
본 논문에서는 자연 이미지가 갖는 통계적 일관성과 안개를 인식하는 시지각적 통계 특성을 이용하여 단일 안개 영상에서, 안개가 없는 참조 영상과의 비교 없이, 시지각적으로 안개 영상의 가시성을 예측한다. 제안하는 모델은 기존 안개 영상의 가시성 예측 방법들이 불가피하게 사용했던 추가 정보들, 예를 들면, 다수의 다양한 안개 영상, 차량 탑재 카메라의 지리적 위치 정보, 사람의 가시성 평가에 대한 학습 결과, 도로 선 혹은 교통 신호와 같이 안개 영상의 돋보이는 특정 물체 정보 등을 사용하지 않는다. 본 논문의 모델은 오직 테스트 안개 영상이 자연 현상에 의한 안개 영상 혹은 안개가 전혀 없는 영상에서 일관적으로 발견되는 통계적 특성으로부터 얼마나 떨어져 있는지 측정함으로써 안개 영상의 가시성을 예측한다. 시지각적으로 안개를 인식하여 일관된 통계를 나타내는 특징 인자들은 공간상의 자연 이미지 통계 모델과 안개 영상의 특징 (명암대비의 감소, 색상과 채도의 감소, 밝기의 증가)으로부터 유도된다. 제안하는 모델은 안개 영상의 전체 영역에 대한 가시성뿐만 아니라 각 관심 영역에서 패치 크기에 따른 지역적 안개 영상의 가시성도 예측할 수 있다. 본 모델의 성능분석을 위하여 사람이 직접 인지하는 가시성 측정 실험을 100 장의 다양한 안개 영상에 대해 수행하였다. 본 논문에서 제시한 모델을 통해 예측된 안개 영상의 가시성과 사람이 체감한 안개 영상의 가시성을 비교한 결과, 둘 사이에 매우 높은 상관관계가 있는 것으로 평가되었다. 본 논문이 제안하는 무참조 안개 영상의 가시성 예측 모델은 사람의 시지각적 특성을 활용한 새로운 방법으로, 향후 안개 영상의 가시성 향상 알고리듬 개발과 선 개발된 안개 제거 및 가시성 향상 알고리듬들의 성능을 정확히 평가할 수 있는 새로운 측정방법 개발 등에 매우 유용할 것으로 기대된다.
It is important to remove fog for accurate object recognition and detection during preprocessing because images taken in foggy adverse weather suffer from poor quality of images due to scattering and absorption of light, resulting in poor performance of various vision-based applications. This paper proposes an end-to-end deep learning-based single image de-fogging method using U-Net architecture. The loss function used in the algorithm is a loss function based on Mahalanobis distance with fog features, which solves the problem of domain shifts, and demonstrates superior performance by comparing qualitative and quantitative numerical evaluations with conventional methods. We also design it to generate fog through the VGG19 loss function and use it as the next training dataset.
A traffic accident which happens in Expressway during dense fog is more likely to cause the sequential accidents and high death rate. So, the preventive measures shall be taken at dangerous areas to enhance the efficiency of roads and minimize the accidents and the resultant damages. So, it is necessary to find out the characteristics of freeway zone which has high risk of fog occurrence and to establish the comprehensive safety strategy on installation and operation of the safety equipment. In this study, I developed a fog forecasting model by using the freeway fog data. This model can be used as the fog forecasting model in dealing with fog problems when new road is planned. The model was developed by using a statistical analysis technique or the regression analysis, focusing on the variables such as geographical features and regional conditions, distances to water sources and the area of water source. I have segmented the models by classifying the area into inland area and coastal area. The distance to water source and area of the water source located around the freeway were found to be main factors causing fog.
자율 주행이나 CCTV와 같이 영상 처리 관련 기술들이 발전함에 따라 영상 왜곡에 대한 문제점을 개선하기 위해 단일 영상을 이용한 안개 제거 알고리즘이 연구되고 있다. 안개 밀도 예측 방법으로는 깊이 맵을 생성하여 영상의 깊이를 추정하는 방법이 있고, 깊이 맵의 학습 데이터로 다양한 안개 특징을 사용할 수 있다. 또한 안개 제거 알고리즘을 실제 기술들에 적용하기 위해 고화질 영상을 실시간으로 처리할 수 있는 하드웨어 구현은 필수적이다. 본 논문에서는 변동계수 기반의 안개 특징인 NLCV(Normalize Local Coefficient of Variation)를 하드웨어로 구현한다. 제안하는 하드웨어는 Xilinx 사의 xczu7ev-2ffvc1156을 Target device로 FPGA 구현하였다. Vivado 프로그램을 통해 합성한 결과 479.616MHz의 최대 동작 주파수를 가지며 4K UHD(3840×2160) 환경에서 실시간 처리 가능함을 보인다.
자율주행 및 인공지능 CCTV는 안개와 같은 악조건 상황에서 주변의 사물과 사람인식에 대한 카메라의 가시성 및 검출 능력이 저하된다. 이러한 악조건 상황에서도 중요한 정보를 정확하게 얻기 위해서 안개 제거 알고리즘에 대한 연구가 필요하다. 과거부터 현재까지 안개 제거 기술은 컴퓨터 비전/ 데이터 기반 등 다양한 방법을 이용한 연구가 진행되고 있다. 안개 제거 기술 중에서 입력영상에 대한 깊이 정보를 통한 안개 전달량을 추정하는 방법이 중요하다. 본 논문에서는 영상의 특징 DCP, saturation∗value, sharpness가 깊이정보와 선형관계에 있다는 가정을 통해 선형모델을 제시한다. 제안한 선형모델을 통한 안개제거방법은 기존의 방법들과 정량적 수치평가에서 평균적으로 10% 향상된 결과를 보여주며 알고리즘의 성능의 우수성을 증명하였다.
In this paper, we propose a method to classify road weather conditions into rain, fog, and sun using a SVM (Support Vector Machine) classifier after extracting weather features from images acquired in real time using an optical sensor installed on a roadside post. A multi-dimensional weather feature vector consisting of factors such as image sharpeness, image entropy, Michelson contrast, MSCN (Mean Subtraction and Contrast Normalization), dark channel prior, image colorfulness, and local binary pattern as global features of weather-related images was extracted from road images, and then a road weather classifier was created by performing machine learning on 700 sun images, 2,000 rain images, and 1,000 fog images. Finally, the classification performance was tested for 140 sun images, 510 rain images, and 240 fog images. Overall classification performance is assessed to be applicable in real road services and can be enhanced further with optimization along with year-round data collection and training.
In this study, meteorological characteristics concerning the occurrence of fog are analyzed using 4-years $(2000\~2003)$ data at Chuncheon and the probability of prediction is investigated. From the analysis of meteorological characteristics, the fog at Chuncheon occurred before sunrise time and disappeared after that time and lasted for $2\~4$ hours. When fog occurred, on the whole, wind direction was blew the northerly and wind speed was below 2.1m/s. Especially, about $42\%$ of foggy day fell on the calm $(0\~0.2\;ms^{-1})$ conditions. The difference between air temperature and dew point temperature near the surface were mainly less than $2^{\circ}C$. For the lack of water surface temperature, the water surface temperature was calculated by using Water Quality River Reservoir System (WQRRS) and then it was used as the surface boundary condition of MM5. The numerical experiment was carried out for 2 days from 1300 LST on 14 October 2003 to 1300 LST on 16 October 2003 and fog was simulated at dawn on 15 and 16 October 2003. Simulated air temperature and dew point temperature indicate the similar tendency to observation and the simulated difference between air temperature and dew point temperature has also the similar tendency within $2^{\circ}C$. Thus, the occurrence of fog is well simulated in the terms of the difference between air temperature and dew point temperature. Horizontal distribution of the difference between air temperature and dew point temperature from the numerical experiment indicates occurrence, dissipation and lasting time of fog at Chuncheon. In Chuncheon, there is close correlation between the frequency of fog day and outflow from Soyang reservoir and high frequency of occurrence due to the difference between air and cold outlet water temperature.
This paper presents a nighttime sea fog detection algorithm incorporating unsupervised learning technique. The algorithm is based on data sets that combine brightness temperatures from the $3.7{\mu}m$ and $10.8{\mu}m$ channels of the meteorological imager (MI) onboard the Communication, Ocean and Meteorological Satellite (COMS), with sea surface temperature from the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA). Previous algorithms generally employed threshold values including the brightness temperature difference between the near infrared and infrared. The threshold values were previously determined from climatological analysis or model simulation. Although this method using predetermined thresholds is very simple and effective in detecting low cloud, it has difficulty in distinguishing fog from stratus because they share similar characteristics of particle size and altitude. In order to improve this, the unsupervised learning approach, which allows a more effective interpretation from the insufficient information, has been utilized. The unsupervised learning method employed in this paper is the expectation-maximization (EM) algorithm that is widely used in incomplete data problems. It identifies distinguishing features of the data by organizing and optimizing the data. This allows for the application of optimal threshold values for fog detection by considering the characteristics of a specific domain. The algorithm has been evaluated using the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) vertical profile products, which showed promising results within a local domain with probability of detection (POD) of 0.753 and critical success index (CSI) of 0.477, respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.