• Title/Summary/Keyword: Focusing grid

Search Result 88, Processing Time 0.024 seconds

Active-Matrix Cathodes though Integration of Amorphous Silicon Thin-Film Transistor with triode -and Diode-Type field Emitters

  • Song, Yoon-Ho;Cho, Young-Rae;Hwang, Chi-Sun;Kim, Bong-Chul;Ahn, Seong-Deok;Chung, Choong-Heui;Kim, Do-Hyung;Uhm, Hyun-Seok;Lee, Jin-Ho;Cho, Kyoung-Ik
    • Journal of Information Display
    • /
    • v.2 no.3
    • /
    • pp.72-77
    • /
    • 2001
  • Amorphous silicon thin-film transistors (a-Si TFTs) were incorporated into Mo-tip-based triode-type field emitters and diode-type ones of carbon nanotubes for an active-matrix cathode (AMC) plate of field emission displays. Also, we developed a novel surface-treatment process for the Mo-tip fabrication, which gleatly enhanced in the stability of field emission. The field emission currents of AMC plates on glass substrate were well controlled by the gate bias of a-Si TFTs. Active-matrix field emission displays (AMFEDs) with these AMC plates were demonstrated in a vacuum chamber, showing low-voltage matrix addressing, good stability and reliability of field emission, and highly uniform light emissions from the anode plate with phosphors. The optimum design of AMFEDs including a-Si TFTs and a new light shield/focusing grid is discussed.

  • PDF

Three-Dimensional Simulation of Seismic Wave Propagation in Elastic Media Using Finite-Difference Method (유한차분법을 이용한 3차원 지진파 전파 모의)

  • 강태섭
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.81-88
    • /
    • 2000
  • The elastic wave equation is solved using the finite-difference method in 3D space to simulate the seismic wave propagation. It is based on the velocity-stress formulation of the equation of motion on a staggered grid. The nonreflecting boundary conditions are used to attenuate the wave field close to the numerical boundary. To satisfy the stress-free conditions at the free-surface boundary, a new formulation combining the zero-stress formalism with the vacuum one is applied. The effective media parameters are employed to satisfy the traction continuity condition across the media interface. With use of the moment-tensor components, the wide range of source mechanism parameters can be specified. The numerical experiments are carried out in order to test the applicability and accuracy of this scheme and to understand the fundamental features of the wave propagation under the generalized elastic media structure. Computational results show that the scheme is sufficiently accurate for modeling wave propagation in 3D elastic media and generates all the possible phases appropriately in under the given heterogeneous velocity structure. Also the characteristics of the ground motion in an sedimentary basin such as the amplification, trapping, and focusing of the elastic wave energy are well represented. These results demonstrate the use of this simulation method will be helpful for modeling the ground motion of seismological and engineering purpose like earthquake hazard assessment, seismic design, city planning, and etc..

  • PDF

A Study About the Application Feasibility of EMS IEC 61000-4-6 Test Standard on Electronic Power Meter (전자식 계기 IEC 61000-4-6 EMS 시험표준 적용 타당성 연구)

  • Kim, Seok-Gon;Park, Chang-Ho;Shin, Dong-Yeol;Song, Tae-Seung;Choi, Yong-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1261-1267
    • /
    • 2011
  • Electricity meters using in Korea are about 1.8 million units. From among these, electronic meters for high voltage, about 170 thousand units were installed to the digital type meter and ones for low voltage installed hundreds of thou-sands of meters through a model project. Recently, low voltage meter are expected to complete the installation within several years. Domestic power metering technology is being beyond a simple framework with an electronic type and is rapidly evolving to intelligent smart metering systems in conjunction with promotion of a national smart grid project. Accordingly, it is important to ensure an immunity of meter for electromagnetic field and environmental noise at the installation site. In this paper, we are going to check the validity of international standard that focusing on RF electromagnetic field immunity of meter to secure the quality and improve the reliability in field operation of meter. And we will verify the validity of test specification focused on actual installation environment and are going to offer the improvement plan of test standard.

Typology of Dress in Contemporary Fashion

  • Yim, Eunhyuk;Istook, Cynthia
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.1
    • /
    • pp.98-115
    • /
    • 2017
  • This study categorizes the formative aspects of dress and their implications according to the extent of revealing or concealing corporeality based on body perceptions. By considering the notion of dress as bodily practice to be a theoretical and methodological framework, this study combines a literature survey and case analysis to analyze and classify the forms of women's dress since the 1920s when contemporary fashion took hold. As examined in this study, the typology of dress was categorized as body-consciousness, deformation, transformation, and formlessness. Body-consciousness that is achieved through tailoring, bias cutting, and stretchy fabric displays corporeality focusing on the structure and function of the body as an internalized corset. Deformations in dress are categorized into two different subcategories. One is the expansion or reduction of bodily features based on the vertical or horizontal grids of the body, which visualizes the anachronistic restraint of the body through an innerwear as outerwear strategy. The other is exaggerations of the bodily features irrelevant to the grid, which break from the limitations and constraints of the body as well as traditional notions of the body. Transformations of the body refer to as follows. First, the deconstruction and restructuring of the body that deconstruct the stereotypes in garment construction. Second, the abstraction of the body that emphasizes the geometrical and architectural shapes. Third, transformable designs which pursue the expansion and multiplicity of function. Formlessness in dress denies the perception of three-dimensionality of the body through the planarization of the body.

A Study on the Architecture of an Electronic Governance System (전자거버넌스 시스템의 구조에 대한 연구)

  • Han Jae-Il;Jun Sung-Taeg
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.1
    • /
    • pp.209-215
    • /
    • 2005
  • The first wave of e-government projects dating from the early 1990s primarily focused on setting up national and global information infrastructure, internal organizational reform, digital procurement, and the digital delivery of government services to citizens. Most of these e-Government projects have concentrated on the development of systems focusing on strengthening the formal agencies and institutions of government. To date, despite many theoretical and empirical studies on citizen involvement in terms of governance, relatively little attention has been paid to developing e-government systems with a focus on improving citizen involvement, which we call e-governance systems. This paper discusses the characteristics of the e-governance systems, identifies core requirements for its development, and suggests an e-governance system architecture that can satisfy the core requirements.

  • PDF

Laser scribing for buried contact solar cell processing (전극함몰형 태양전지의 제조를 위한 레이저 scribing)

  • 조은철;조영현;이수홍
    • Electrical & Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.593-599
    • /
    • 1996
  • Laser scribing of silicon plays an important role in metallization including the grid pattern and the front surface geometry which means aspect ratio of metal contacts. To make a front metal electrode of buried contact solar cell, we used ND:YAG lasers that deliver average 3-4W at TEM$\_$00/ mode power to sample stage. The Q-switched Nd:YAG laser of 1.064 gm wavelength was used for silicon scribing with 20-40.mu.m width and 20-200.mu.m depth capabilities. After silicon slag etching, the groove width and depth for buried contact solar cell are -20.mu.m and 30-50.mu.m respectively. Using MEL 40 Nd:YAG laser system, we can scribe the silicon surface with 18-23.mu.m width and 20-200.mu.m depth controlled by krypton arc lamp power, scan speed, pulse frequency and beam focusing. We fabricated a buried contact Silicon Solar Cell which had an energy conversion efficiency of 18.8 %. In this case, the groove width and depth are 20.mu.m and 50.mu.m respectively.

  • PDF

A Development of Lagrangian Particle Dispersion Model (Focusing on Calculation Methods of the Concentration Profile) (라그란지안 입자확산모델개발(농도 계산방법의 검토))

  • 구윤서
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.6
    • /
    • pp.757-765
    • /
    • 1999
  • Lagrangian particle dispersion model(LPDM) is an effective tool to calculate the dispersion from a point source since it dose not induce numerical diffusion errors in solving the pollutant dispersion equation. Fictitious particles are released to the atmosphere from the emission source and they are then transported by the mean velocity and diffused by the turbulent eddy motion in the LPDM. The concentration distribution from the dispersed particles in the calculation domain are finally estimated by applying a particle count method or a Gaussian kernel method. The two methods for calculating concentration profiles were compared each other and tested against the analytic solution and the tracer experiment to find the strength and weakness of each method and to choose computationally time saving method for the LPDM. The calculated concentrations from the particle count method was heavily dependent on the number of the particles released at the emission source. It requires lots fo particle emission to reach the converged concentration field. And resulting concentrations were also dependent on the size of numerical grid. The concentration field by the Gaussian kernel method, however, converged with a low particle emission rate at the source and was in good agreement with the analytic solution and the tracer experiment. The results showed that Gaussian kernel method was more effective method to calculate the concentrations in the LPDM.

  • PDF

A Study on the Numerical Methodologies of Hydroelasticity Analysis for Ship Springing Problem (스프링잉 응답을 위한 유탄성 해석의 수치기법에 대한 연구)

  • Kim, Yoo-Il;Kim, Kyong-Hwan;Kim, Yong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.3
    • /
    • pp.232-248
    • /
    • 2009
  • Numerical methodology to solve ship springing problem, which is basically fluid-structure interaction problem, was explored in this study. Solution of this hydroelasticity problem was sought by coupling higher order B-spline Rankine panel method and finite element method in time domain, each of which is introduced for fluid and structure domain respectively. Even though varieties of different combinations in terms of numerical scheme are possible and have been tried by many researchers to solve the problem, no systematic study regarding the characteristics of each scheme has been done so far. Here, extensive case studies have been done on the numerical schemes especially focusing on the iteration method, FE analysis of beam-like structure, handling of forward speed problem and so on. Two different iteration scheme, Newton style one and fixed point iteration, were tried in this study and results were compared between the two. For the solution of the FE-based equation of motion, direct integration and modal superposition method were compared with each other from the viewpoint of its efficiency and accuracy. Finally, calculation of second derivative of basis potential, which is difficult to obtain with accuracy within grid-based method like BEM was discussed.

Development of Chemical Equilibrium CFD Code for Performance Prediction and Optimum Design of LRE Thrust Chamber (액체로켓 추력실의 성능 예측 및 최적 형상 설계를 위한 해석코드 개발)

  • Kim Seong-Ku;Moon Yoon Wan;Park Tae-Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • An axisymmetric compressible flow solver accounting for chemical equilibrium has been developed as an analysis tool exclusively suitable for performance prediction and optimum contour design of LRE thrust chamber. By virtue of several features focusing on user-friendliness and effectiveness including automatical grid generation and iterative calculations with changes in design parameters prescribed through only one keyword-type input file, a design engineer can evaluate very fast and easily the influences of various design inputs such as geometrical parameters and operating conditions on propulsive performance. Validations have been carried out for various aspects by detailed comparisons with the result of CEA code, experimental data of JPL nozzle, actual data for two historical engines, and ReTF data for KSR-III.

Power Flow Algorithm for Weakly Meshed Distribution Network with Distributed Generation Based on Loop-analysis in Different Load Models

  • Su, Hongsheng;Zhang, Zezhong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.608-619
    • /
    • 2018
  • As distributed generation (DG) is connected to grid, there is new node-type occurring in distribution network. An efficient algorithm is proposed in this paper to calculate power flow for weakly meshed distribution network with DGs in different load models. The algorithm respectively establishes mathematical models focusing on the wind power, photovoltaic cell, fuel cell, and gas turbine, wherein the different DGs are respectively equivalent to PQ, PI, PQ (V) and PV node-type. When dealing with PV node, the algorithm adopts reactive power compensation device to correct power, and the reactive power allocation principle is proposed to determine reactive power initial value to improve convergence of the algorithm. In addition, when dealing with the weakly meshed network, the proposed algorithm, which builds path matrix based on loop-analysis and establishes incident matrix of node voltage and injection current, possesses good convergence and strong ability to process the loops. The simulation results in IEEE33 and PG&G69 node distribution networks show that with increase of the number of loops, the algorithm's iteration times will decrease, and its convergence performance is stronger. Clearly, it can be effectively used to solve the problem of power flow calculation for weakly meshed distribution network containing different DGs.