• Title/Summary/Keyword: Focal length

Search Result 377, Processing Time 0.029 seconds

The setup of the moiré deflectometry using the virtual grating and the measurement of the effective focal length (가상격자를 사용한 무아레 무늬 발생기의 구성과 유효초점거리 측정)

  • Kim, Sang Gee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.2
    • /
    • pp.181-186
    • /
    • 2000
  • The setup of the moir$\acute{e}$ deflectometry using the virtual grating was done, so the convergence and divergence of a pencil of ray was determined. The light source was He-Ne laser(3mW). The focal length of the first lens, the second lens being 18 mm, 250 mm respectively was used for the setup of the beam expander. The optics of the moir$\acute{e}$ deflectometry determining the vergence was used a diffraction grating(pitch = $1.6{\mu}m/line$) and a front flat reflection mirror. The effective focal length of the trial lens set was measured and compared with the theoretical value.

  • PDF

Design of an Optical System for a Space Target Detection Camera

  • Zhang, Liu;Zhang, Jiakun;Lei, Jingwen;Xu, Yutong;Lv, Xueying
    • Current Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.420-429
    • /
    • 2022
  • In this paper, the details and design process of an optical system for space target detection cameras are introduced. The whole system is divided into three structures. The first structure is a short-focus visible light system for rough detection in a large field of view. The field of view is 2°, the effective focal length is 1,125 mm, and the F-number is 3.83. The second structure is a telephoto visible light system for precise detection in a small field of view. The field of view is 1°, the effective focal length is 2,300 mm, and the F-number is 7.67. The third structure is an infrared light detection system. The field of view is 2°, the effective focal length is 390 mm, and the F-number is 1.3. The visible long-focus narrow field of view and visible short-focus wide field of view are switched through a turning mirror. Design results show that the modulation transfer functions of the three structures of the system are close to the diffraction limit. It can further be seen that the short-focus wide-field-of-view distortion is controlled within 0.1%, the long-focus narrow-field-of-view distortion within 0.5%, and the infrared subsystem distortion within 0.2%. The imaging effect is good and the purpose of the design is achieved.

Focal Reducer for CQUEAN

  • Lim, Ju-Hee;Chang, Seung-Hyuk;Kim, Young-Ju;Kim, Jin-Young;Park, Won-Kee;Im, Myung-Shin;Pak, Soo-Jong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.62.2-62.2
    • /
    • 2010
  • The CQUEAN (Camera for QUasars in EArly uNiverse) is an optical CCD camera optimized for the observation of high redshift QSOs to understand the nature of early universe. The focal reducer, which is composed of four spherical lens, is allowed to secure a wider field of view for CQUEAN, by reducing the focal length of the system by one third. We designed the lens configuration, the lens barrel, and the adapters to assemble to attach focal reducer to the CCD camera system. We performed tolerance analysis using ZEMAX. The manufacturing of the focal reducer system and its lab test of optical performance were already finished. It turned out that the performance can meet the original requirement, with the aberration and alignment error taken into account. We successfully attached the focal reducer and CQUEAN to the cassegrain focus of 2.1m telescope at McDonald Observatory, USA, and several tests of CQUEAN system were carried out. In this presentation, I will show the process of focal reducer fabrication and the result of performance test.

  • PDF

Size Measurements of Droplets Entrained in a Stagnant Bubbling Liquid Column

  • Jeong, Hae-Yong;No, Hee-Cheon;Song, Chul-Hwa;Chung, Moon-Ki
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.254-259
    • /
    • 1996
  • Phase Doppler particle analyze. (PDPA) is a instrument which can be used to obtain simultaneous size and velocity measurements in a multiphase flow. In this study, the size of the water droplets entrained from a bubbling surface of a stagnant liquid column is measured by PDPA with a specially designed transmitter of long focal length and large beam diameter. The test section tube is made of acryle with 18 mm I.D. and 900 mm length. The experimental data are obtained for the air superficial velocity between 0.7 m/s to 3.4 m/s at atmospheric pressure. The experimental results show that there exists large difference in the entrainment mechanism between the churn-turbulent flow and annular flow. Through the present study, the phase Doppler analyzer system is shown to be successfully applied to measure particle sizes larger than $2,000\mu\textrm{m}$ if a transmitter of long focal length is utilized.

  • PDF

The beam property simulation for the fabrication of a MLA(Micro Lens Array) (MLA(Micro Lens Array) 제작을 위한 광학 시뮬레이션)

  • Oh, Hae-Kwan;Seo, Hyun-Woo;Kim, Geun-Young;Wei, Chang-Hyun;Song, Yo-Tak;Lee, Kee-Keun;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1497_1498
    • /
    • 2009
  • This paper presents the simulation of micro-lens arrays based on dry and wet etching technique. Code V (Optical Research Associates Ltd) simulation was performed to extract optimal design parameters of a Micro-Lens Array(MLA). Thickness of UV adhesive, wavelength of laser source, curvature, and shape of lens surface were chosen for the design parameters. The simulation results showed that focal length of a MLA decreased with the increase of UV adhesive thickness. And the focal length depended on shape of lens surface and length of laser source.

  • PDF

Zoom Lens Distortion Correction Of Video Sequence Using Nonlinear Zoom Lens Distortion Model (비선형 줌-렌즈 왜곡 모델을 이용한 비디오 영상에서의 줌-렌즈 왜곡 보정)

  • Kim, Dae-Hyun;Shin, Hyoung-Chul;Oh, Ju-Hyun;Nam, Seung-Jin;Sohn, Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.14 no.3
    • /
    • pp.299-310
    • /
    • 2009
  • In this paper, we proposed a new method to correct the zoom lens distortion for the video sequence captured by the zoom lens. First, we defined the nonlinear zoom lens distortion model which is represented by the focal length and the lens distortion using the characteristic that lens distortion parameters are nonlinearly and monotonically changed while the focal length is increased. Then, we chose some sample images from the video sequence and estimated a focal length and a lens distortion parameter for each sample image. Using these estimated parameters, we were able to optimize the zoom lens distortion model. Once the zoom lens distortion model was obtained, lens distortion parameters of other images were able to be computed as their focal lengths were input. The proposed method has been made experiments with many real images and videos. As a result, accurate distortion parameters were estimated from the zoom lens distortion model and distorted images were well corrected without any visual artifacts.

Development of Scope with Abbe-König Prism (아베-코닉 프리즘을 이용한 스코프 개발)

  • Lee, Dong-Hee;Park, Seung-Hwan
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.509-517
    • /
    • 2013
  • Purpose: The purpose of this study is developing the 2.6 ${\times}$ optical scope with a Abbe-K$\ddot{o}$nig prism. Methods: First, considering the size of the effective aperture and the focal length of the objective lens, we designed an Abbe-K$\ddot{o}$nig prism. Next, we calculated the optical and geometric distances of Abbe-K$\ddot{o}$nig prism designed in this way. After allocating the focal length of the objective lens and the eyepiece lens so as to satisfy the magnification and optical effective distance of the entire system by using this calculation result, we completed the entire system by optimizing this optical system. Results: We were able to complete the optical scope of about 2.6 ${\times}$ magnification by designing an objective lens with a focal length of 63.13 mm which was composed of two pieces, an eyepiece with a focal length of 24.3 mm which was composed of four pieces, and an Abbe-K$\ddot{o}$nig prism with a face length 11.5 mm. Conclusions: We designed and fabricated an optical scope with 2.6 ${\times}$ magnification employing an Abbe-K$\ddot{o}$nig prism. Then, this system became the compacted optical system with a barrel diameter of 31 mm, characterized by an effective aperture of 12.0 mm and an effective optical barrel length of 103 mm and a resolution of 200 cycles/rad at 50% MTF criterion within the half viewing field angle of $6.42^{\circ}$.

Nanocomposite-Based Energy Converters for Long-Range Focused Ultrasound Treatment

  • Lee, Seung Jin;Heo, Jeongmin;Song, Ju Ho;Thakur, Ujwal;Park, Hui Joon;Baac, Hyoung Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.369-369
    • /
    • 2016
  • A nanostructure composite is a highly suitable substance for photoacoustic ultrasound generation. This allows an input laser beam (typically, nanosecond pulse duration) to be efficiently converted to an ultrasonic output with tens-of-MHz frequency. This type of energy converter has been demonstrated by using a carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite film that exhibit high optical absorption, rapid heat transition, and mechanical durability, all of which are necessary properties for high-amplitude ultrasound generation. In order to develop the CNT-PDMS composite film, a high-temperature chemical vapor deposition (HTCVD) method has been commonly used so far to grow CNT and then produce a CNT-PDMS composite structure. Here, instead of the complex HTCVD, we use a mixed solution of hydrophobic multi-walled CNT and dimethylformamid (DMF) and fabricate a solution-processed CNT-PDMS composite film over a spherically concave substrate, i.e. a focal energy converter. As the solution process can be applied over a large area, we could easily fabricate the focal transmitter that focuses the photoacoustic output at the moment of generation from the CNT-PDMS composite layer. With this method, we developed photoacoustic energy converters with a large diameter (>25 mm) and a long focal length (several cm). The lens performance was characterized in terms of output pressure amplitude for an incident pulsed laser energy and focal spot dimension in both lateral and axial. Due to the long focal length, we expect that the new lens can be applied for long-range ultrasonic treatment, e.g. biomedical therapy.

  • PDF

Comparative Analysis of Focal Length Bias for Three Different Line Scanners (초점거리 편의가 지상 정확도에 미치는 영향 비교 연구 - 세가지 라인 스캐너를 대상으로 -)

  • Kim, Changjae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.363-371
    • /
    • 2014
  • Most space-borne optical scanning systems adopt linear arrayconfigurations. The well-knownthree different types of space-borne sensors arealong-track line scanner, across-track linescanner, and three line scanner. To acquire accurate location information of an object on the ground withthose sensors, the exterior and interior orientation parameters are critical factors for both of space-borne and airborne missions. Since the imaging geometry of sensors mightchange time to time due to thermal influence, vibration, and wind, it is very important to analyze the Interior Orientation Parameters (IOP) effects on the ground. The experiments based on synthetic datasets arecarried out while the focal length biases are changing. Also, both high and low altitudes of the imagingsensor were applied. In case with the along-track line scanner, the focal length bias caused errors along the scanline direction. In the other case with the across-track one, the focal length bias caused errors alongthe scan line and vertical directions. Lastly, vertical errors were observed in the case ofthree-line scanner. Those results from this study will be able to provide the guideline for developing new linearsensors, so as for improving the accuracy of laboratory or in-flight sensor calibrations.