• Title/Summary/Keyword: Foamed aluminum

Search Result 25, Processing Time 0.026 seconds

Interior Noise Reduction of Enclosure Using Predicted Characteristics of Absorber (흡음재의 음향특성 예측에 의한 밀폐계의 내부 소음저감)

  • Lee Ghi-Youn;Sim Hyoun-Jin;Lee Jung-Yoon;Oh Jae-Eung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.60-66
    • /
    • 2006
  • For the purpose of finding out the sound field characteristics in a rectangular cavity, analytical and experimental studies are performed with white noise input. Two-microphone impedance tube method is used to measure the impedances of foamed aluminum. Foamed aluminum is well known metallic porous material which has excellent properties of light weight and high absorbing performance. And predicted impedances of foamed aluminum are compared with measured impedances. The predicted acoustical parameters are applied to the theoretical analysis to predict sound pressure field in the cavity. The measured sound absorption effects are compared with the predicted values for both cases with and without foamed aluminum lining in the cavity of the rectangular enclosure.

Analysis of the Sound field in a Reverberation Room(II) (잔향실의 음장해석 (II))

  • 임정빈;권영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.681-686
    • /
    • 1997
  • Foamed aluminum is well known metallic porous sound absorption material which has excellent properties of light weight and high absorbing performance. For the purpose of finding out the sound field characteristics within a simple closed cubic enclosure with foamed aluminum, analytic and experimental studies are performed. For the first time, the standing wave apparatus is used to measure absorption coefficient and impedance of the foamed aluminum. Next, the sound effects of absorption material in acoustically loaded rectangular enclosure are identified according as the foamed aluminim is to be or not.

  • PDF

Sound Absorption Effects in a Rectangular Enclosure with the Foamed Aluminum Sheet Absorber (발포 알루미늄 흡음재를 이용한 단순 폐공간의 내부 음장 변화에 관한 연구)

  • 김상헌;손동구;오재응
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.177-186
    • /
    • 1998
  • For the purpose of finding out the sound field characteristics in a cavity of a rectangular enclosure with foamed aluminum lining, analytical and experimental studies are performed with random noise input. Experimental method using two-microphone impedance tube measures the absorption coefficients and the impedances of simple sound absorbing materials. Measured acoustical parameters of the test samples are applied to the theoretical analysis to predict sound pressure field in the cavity. The sound absorp- tion effects from measurements are compared to prediction in both cases with and without foamed aluminum lining in the cavity of the rectangular enclosure.

  • PDF

Sound absorption characteristics of foamed aluminum considering installing on the wall and in the space (발포알루미늄의 시공방법에 따른 흡음 특성에 관한 연구)

  • Park, Hyeon-Ku;Kim, Hang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.50-55
    • /
    • 2017
  • Foamed aluminum is an eco-friendly material that is reusable and safe against fire. These superior characteristics have many advantages in the field of building and construction and in cruise ships as sound absorbers. So far, the research on foamed aluminum has been focused on the sound absorption performance using the foaming ratio. Foamed aluminum, when compared with the existing sound absorbers such as glass wool or rock wool, has a better structural performance, and it can be installed on walls in many different ways. This study conducted experiments on the sound absorption characteristics considering the various applications of foamed aluminum. The effects of painting surfaces with the finishing material were compared to that of the normal surface, and the effects of vertical installation and hanging from the ceiling was compared with the effects of installing on the floor.

Sound Insulation Performance of the Foamed Aluminum Sandwich Panel for a Railway Vehicle (발포 알루미늄 샌드위치 패널의 차음성능)

  • Ahn, Yong-Chan;Lee, Joong-Hyuk;Byeon, Jun-Ho;Kim, Seock-Hyun
    • Journal of Industrial Technology
    • /
    • v.37 no.1
    • /
    • pp.1-4
    • /
    • 2017
  • Speeding up of railway vehicles requires weight reduction of the vehicle body. However, when the vehicle body is lighter, the sound insulation performance for blocking the noise from the outside is reduced. Aluminum is an important material used in the bodywork of transportation vehicles such as railway vehicles, aircraft, and automobiles. In this study, the bending stiffness and sound insulation performance of foamed aluminum with sandwich structure are investigated experimentally. The transmission loss is measured in accordance with the international standard ASTM E 2249-02. The mass-law deviation is used to evaluate the sound insulation performance per weight. In order to examine the applicability of the foamed aluminum sandwich panel to railway vehicles, the analysis of bending stiffness and an experimental review are carried out at the same time.

Mechanical Properties of the Foamed Aluminum According to the Quantity of Calcium (칼슘 첨가량에 따른 발포 알루미늄의 기계적 성질)

  • Do Bok-Hwan;Kim Joo-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.113-118
    • /
    • 2006
  • In this work, we observed the changes in mass difference according to Al-foam's amount of Ca contents which depends on the viscosity control of fusion, quality of foamed addition, mixing, temperature tests. These are crucial influencing factors in determining foam-metal's size in the manufacturing process. In order to obtain the specimen, we changed the specific gravity from 0.2 to 0.3 for the study of the light weight, and obtained the optimal values of specific gravity, and then showed the mechanical characteristics of ultra-lightweight metal according to the changing mass. The optimal conditions for aluminum foam is when the addition of Ca content in $1.5wt\%~2.0wt\%$

Physical Modeling of Aluminum-Foam Generation (알루미늄 발포공정의 물리적 모델링)

  • Oak S. M.;Moon Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.297-300
    • /
    • 2001
  • Physical modeling technique is applied to investigate foam generation in molten aluminum. By using room temperature water with specially designed equipment, the effects of stirrer type, fluid viscosity(glycerine added to water) and stirring velocity on foam generation behaviors are intensively analysed The distribution and size of bubbles varied with each process parameters but the most important parameters are stirring velocity and fluid viscosity. The results obtained from physical simulation have been confirmed by actual aluminum foam generation experiment at various process variables.

  • PDF

Effects of Viscosity Control by Induction Heating on Micro Cell in Forming Process of Foamed Aluminum (알루미늄 발포재의 성형공정에서 유도가열 법에 의한 점도 제어가 미세 기공에 미치는 영향)

  • Jeon, Yong-Pil;Kang, Chung-Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.136-144
    • /
    • 2002
  • Melting method has long been considered difficult to realize because of problems such as the low foamability of molten metal, the varying size of cellular structures and solidification shrinkage. The parameters to solve the problem in electric furnace were stirring temperature, stirring velocity, heating velocity and foaming temperature It is important to consider the effects of induction heating, because it brings about the inner flow by the temperature gradient. Aspect ratio also depends on the induction heating. Mechanical properties are dependent on cell sizes and aspect rations. Therefore, this paper presents the effects of these parameters on the cell sizes. For the sake of this, combined stirring process was used to fabricate aluminum foam materials by the above mentioned parameters. Image analysis was performed to calculate the cell sizes, distributions, and aspect ratioes at the cross section of feared aluminum in the direction of height.

Characteristics of the Functional Panel Made from Foamed Aluminum (발포알루미늄을 이용하여 제조한 기능성 판넬 특성 연구)

  • Kim, Jae-Yong;Um, Myeong-Heon;An, Dae-Hyun;Shim, Myeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.62-66
    • /
    • 2006
  • In this work, the properties of environmentally friendly functional panel made from waste aluminum were investigated. Product quality enhancement was pursued through an improved viscosity process, a mixing process by agitating, a foaming process, a cooling process, and a color addition process. An acoustic transmission attenuation test, a sound adsorption rate measurement test, and a foaming condition and scrap mixing test were implemented. As a result, the functional panel made from waste aluminum was ultra lightweight and had excellent properties such as soundproof, sound interception, and shielding harmful electromagnetic waves. Also, the functional panel showed low thermal conductivity (about 2.2 kcal/mh) and excellent heat-insulating property.