• Title/Summary/Keyword: Foam metal

Search Result 156, Processing Time 0.025 seconds

Nonlinear thermal post-buckling analysis of graphene platelets reinforced metal foams plates with initial geometrical imperfection

  • Yin-Ping Li;Gui-Lin She;Lei-Lei Gan;Hai-Bo Liu
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.649-658
    • /
    • 2023
  • Although some scholars have studied the thermal post-buckling of graphene platelets strengthened metal foams (GPLRMFs) plates, they have not considered the influence of initial geometrical imperfection. Inspired by this fact, the present paper studies the thermal post-buckling characteristics of GPLRMFs plates with initial geometrical imperfection. Three kinds of graphene platelets (GPLs) distribution patterns including three patterns have been considered. The governing equations are derived according to the first-order plate theory and solved with the help of the Galerkin method. According to the comparison with published paper, the accuracy and correctness of the present research are verified. In the end, the effects of material properties and initial geometrical imperfection on the thermal post-buckling response of the GPLRMFs plates are examined. It can be found that the presence of initial geometrical imperfection reduces the thermal post-buckling strength. In addition, the present study indicates that GPL-A pattern is best way to improve thermal post-buckling strength for GPLRMFs plates, and the presence of foams can improve the thermal post-buckling strength of GPLRMFs plates, the Foam- II and Foam- I patterns have the lowest and highest thermal post-buckling strength. Our research can provide guidance for the thermal stability analysis of GPLRMFs plates.

Influence of Fluorine-Doped Tin Oxide Coated on NiCrAl Alloy Foam Using Ultrasonic Spray Pyrolysis Deposition (초음파 분무 열분해법을 이용한 NiCrAl 합금 폼에 코팅된 불소 도핑된 주석 산화물의 영향)

  • Shin, Dong-Yo;Bae, Ju-Won;Koo, Bon-Ryul;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.27 no.7
    • /
    • pp.392-397
    • /
    • 2017
  • Fluorine-doped tin oxide (FTO) coated NiCrAl alloy foam is fabricated using ultrasonic spray pyrolysis deposition (USPD). To confirm the influence of the FTO layer on the NiCrAl alloy foam, we investigated the structural, chemical, and morphological properties and chemical resistance by using USPD to adjust the FTO coating time (12, 18, and 24 min). As a result, when an FTO layer was coated for 24 min on NiCrAl alloy foam, it was found to have an enhanced chemical resistance compared to those of the other samples. This improvement in the chemical resistance of using USPD NiAlCr alloy foam can be the result of the existence of an FTO layer, which can act as a protection layer between the NiAlCr alloy foam and the electrolyte and also the result of the increased thickness of the FTO layer, which enhances the diffusion length of the metal ion.

Antifungal Properties of Self-actuated Photocatalyst Coated PU Foam (자기구동형 광촉매 코팅에 의한 PU발포체의 항곰팡이 특성)

  • Choi, Sei Young
    • Elastomers and Composites
    • /
    • v.49 no.4
    • /
    • pp.341-345
    • /
    • 2014
  • In this study, self-actuated photocatalyst that titanium dioxide doped by more than two transition metal was coated PU foam. The antibacterial and antifungal activity of self-actuated photocatalyst coated PU foam was characterized without light. The antibacterial property of self-actuated photocatalyst coated PU foam was shown to be reduced more than 96%, and the antifungal property was shown to be reduced more than 99.9%. The durability of self-actuated photocatalyst coated PU foam tested by Weather-O-meter showed the 7% reduction of formaldehyde decomposition from 96.5% before test to 89.8% after test. The observation of surface of PU foam coated with self-actuated photocatalyst showed that the catalyst was firmly attached to the surface of polyester fiber without separation.

Fluidity and Mechanical Properties of Open Cell AZ31 Mg Alloy Foam

  • Yue, Xue-Zheng;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.32 no.3
    • /
    • pp.150-156
    • /
    • 2012
  • 발포금속은 초경량 재료로서 폐기공과 개기공의 두 가지 형태의 구조를 지니고 있으며 폐기공은 내충격성, 흡음성, 단열성의 기능을 지니고 있고, 개기공은 필터, 생체지지대, 촉매재, 열방출재 등으로 사용되고 있다. 개기공발포재는 삼차원 구조모양으로 프리커서를 이용한 압력정밀주조나 기공입자용출법으로 제조하고 있으나 기공의 크기나 셀의 형상, 두께 등을 조절하기에 어려움이 있다. 이를 해결하기 위하여 환경친화적인 펄라이트를 사용하여 목적하는 크기의 그래뉼을 제조한 후, 용융마그네슘합금을 감압주조법으로 주조하여 그래뉼의 크기로 기공율을 조절하고, 주형의 온도와 압력에 따른 유동의 길이를 측정하였다. 그래뉼 직경이 2.3 $mm{\O}$ 일때에 주형의 온도 $300^{\circ}C$ 이상, 압력이 5000 Pa 이상에서 유동길이 6.5 cm 이상을 얻었다.

Interfacial Characteristics of Al-Cu Cast Composites for High Conductivity Applications (고전도성 부품용 Al-Cu 주조복합재료의 계면 특성)

  • Kim, Jeong-Min;Kim, Nam-Hoon;Ko, Se-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.38 no.3
    • /
    • pp.55-59
    • /
    • 2018
  • To optimize the conductivity and to reduce the weight by as much as possible, Al-Cu composites were prepared through a suction-casting procedure. Pure copper metal foam was infiltrated by melted aluminum with the use of the vacuum, after which warm rolling was conducted to remove several remaining pores at the interface between the Cu foam and the aluminum matrix. Despite the short casting time, significant dissolution of Cu into the melt was observed. Moreover, it was found that various Al-Cu intermetallic compounds arose at the interface during the isothermal heating process after the casting and rolling steps. The average thickness of the Al-Cu intermetallic compound tended to increase in proportion to the heating time. The electrical and thermal conductivity levels of the cast composites were found to be comparatively low, mainly due to the dissolution of the Cu foam and the formation of intermetallics at the interface.

Effects of Process Parameters on Cell Control of Aluminum Foal Material (알루미늄 발포소재의 성형 공정 인자가 기공제어에 미치는 영향)

  • 전용필;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.163-166
    • /
    • 1997
  • Aluminium foam material is a highly porous material having complicated cellular structure defined by randomly distributed air pores in metallic matrix. this structure gives the aluminium a set of properties which cannot be achieved by any of conventional treatments. The properties of aluminium foam material significantly depend on its porosity, so that a desired profile of properties can be tailored by changing the foam density. Melting method is the one of foaming processes, which the production has long been considered difficult to realize becaues of such problems as the low foamability of molten metal, the varying size of. cellular structures, solidification shrinkage and so on. These problems, however, have gradually been solved by researchers and some manufacturers are now producing foamed aluminum by their own methods. Most of all, the parameters of solving problem in electric furnace were stirring temperature, stirring velocity, foaming temper:iture, and so on. But it has not considered about those in induction heating, foaming velocity and foaming temperature in semi-solid state yet. Therefore, this paper presents the effects on these parameter to control cell size, quantity and distribution.

  • PDF

The Study on Fabrication and Sound Absorption Properties of Al-Zn-Mg-Cu Alloy Foams (Al-Zn-Mg-Cu 발포합금 제조 및 흡음특성에 관한 연구)

  • Jeong, Seung-Reung;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.31 no.3
    • /
    • pp.145-151
    • /
    • 2011
  • Metallic foam has been known as a functional material which can be used for absorption properties of energy and sound. The unique characteristics of Al foam of mechanical, acoustic, thermal properties depend on density, cell size distribution and cell size, and these characteristics expected to apply industry field. Al-Zn-Mg-Cu alloy foams was fabricated by following process; firstly melting the Al alloy, thickening process of addition of Ca granule to increased of viscosity, foaming process of addition of titanium hydride powder to make the pores, holding in the furnace to form of cooling down to the room temperature. Metal foams with various porosity level were manufactured by change the foaming temperature. Compressive strength of the Al alloy foams was 2 times higher at 88% porosity and 1.2 times higher at 92% porosity than pure Al foams. It's sound and vibration absorption coefficient were higher than pure Al foams and with increasing porosity.

Effect of Foaming Temperature on Cell Structure of 606X Series Aluminum Alloy Metallic Foams (Foaming 온도에 따른 606X계 발포 알루미늄의 제조 특성)

  • Song, Yeong-Hwan;Park, Soo-Han;Jeong, Min-Jae;Kang, Kwang-Jung;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.28 no.2
    • /
    • pp.79-84
    • /
    • 2008
  • Metal foam is one of the most interesting materials with various multi-functional properties such as light weight, energy absorption, high stiffness and damping capability. Among them, energy absorption property has keen interests in the field of automotives for passenger protection. Nowadays, researches about pore size and porosity control of the foam are increased to correspond them. However, though energy absorption properties are improved, these results are not cost-effective process. In present research, however, as a part of improving the energy absorption property of metallic foams, 606X aluminum alloy was used for cell wall material which has higher strength than pure aluminum. And its morphological features are characterized. As a results, porosity and pore size are uniformity distribution with increasing foaming temperature in the case of 6061 alloy foams. 6063 alloy foam specimens have opposite tendency because of the influence of alloying element and viscosity of the molten melt.

Catalytic Detoxication of Coal Combustion Gases (연탄 연소가스의 촉매제독에 관한 연구)

  • Tuwon Chang;Young Sun Uh;Youn Soo Sohn
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.656-663
    • /
    • 1985
  • A catalytic conversion of carbon monoxide has been studied in a coal combustion system. Three different catalysts were prepared by impregnating 0.2% platinum on three different types of supports, ${\gamma}-Al_2O_3$ pellets, ceramic foam and honeycomb. These catalysts have shown an excellent initial activities in the coal combustion system, but they were rapidly deactivated in repeated uses. Among these catalysts ceramic foam has shown to be better than others both in activities and durabilities. The main cause of deactivation seems to be ascribed to poisoning by zinc metal and sulfur compounds and to decrease in platinum surface area by sintering.

  • PDF