• Title/Summary/Keyword: Flyback transformer

Search Result 99, Processing Time 0.027 seconds

Simplified 2-D Analytical Model for Winding Loss Analysis of Flyback Transformers

  • Zhang, Junming;Yuan, Wei;Zeng, Hulong;Qian, Zhaoming
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.960-973
    • /
    • 2012
  • The winding loss analysis of a flyback transformer is difficult and ambiguous because the primary side current and the secondary side current differs both in shape and phase, especially for DCM (Discontinuous Conduction Mode) operation. Meanwhile, the fringing field caused by the air gaps further makes the traditional 1-D loss analysis model not directly applicable. The paper gives a thorough investigation into the phase shift of winding currents, which indicates that the phase shift of the high order harmonics is still close to $180^{\circ}$ out-of-phase. Based on the analysis, a simplified 2-D winding loss analytical model for flyback transformers considering the effects of low order harmonics is proposed. By neglecting the y components of the fringing field, the proposed model has an acceptable accuracy and a simple form that is similar to the conventional 1-D model. The power loss calculated with the proposed analysis model is verified by FEA (Finite Element Analysis) simulations and experimental results.

Fabrication and Characteristics of Transformers for High Power Density SMPS (고밀도 SMPS 용 변압기의 제조와 특성)

  • Kim, Hyun-Sik;Kim, Jong-Ryung;Huh, Jung-Sub;Oh, Yong-Woo;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.7-10
    • /
    • 2002
  • We designed the flyback planar transformer, which had 8W capacity, with 70V input voltage and 8.2V output voltage for the establishment of design method and the confirmation of application possibility. The numerical value of inductance measured under the switching frequency of 120 kHz was 1650 ${\mu}H$, which was the inductance efficiency of 85~87% against theoretical value. The A.C. resistance of primary and secondary coil was 4.2 ${\Omega}$ and 0.25 ${\Omega}$ respectively. On the other hand, the quality factor for each wound numbers showed quite a high value of 158 and 75 respectively. And the Coupling Factor was 0.96~0.97 under 120 kHz switching frequency. And the shape of the output wave of the planar transformer at 70V input voltage was a stable square wave.

  • PDF

Gyro HV Power Supply Design for Attitude Control in the Satellite (위성 자세제어용 자이로 HVPS 설계)

  • Kim, Eui-Chan;Koo, Ja-Chun
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.109-113
    • /
    • 2007
  • In this paper, the design process of the High Voltage Power Supply for RLG(Ring Laser Gyroscope) is described. The specification for High Voltage Power Supply(HVPS) is proposed. Also, The analysis of Flyback converter topology is explained. The Design for the HVPS is composed of the inverter circuit, feedback control circuit, high frequency switching transformer design, and voltage doubler circuit.

  • PDF

Analysis, Design and Implementation of a New Chokeless Interleaved ZVS Forward-Flyback Converter

  • Taheri, Meghdad;Milimonfared, Jafar;Namadmalan, Alireza;Bayat, Hasan;Bakhshizadeh, Mohammad Kazem
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.499-506
    • /
    • 2011
  • This paper presents an interleaved active-clamping zero-voltage-switching (ZVS) forward-flyback converter without an output choke. The presented topology has two active-clamping circuits with two separated transformers. Because of the interleaved operation of the converter, the output current ripple will be reduced. The proposed converter can approximately share the total load current between the two secondaries. Therefore, the transformer copper loss and the rectifier diodes conduction loss can be decreased. The output capacitor is made of two series capacitors which reduces the peak reverse voltage of the rectifier diodes. The circuit has no output inductor and few semiconductor elements, such that the adopted circuit has a simpler structure, a lower cost and is suitable for high power density applications. A detailed analysis and the design of this new converter are described. A prototype converter has been implemented and experimental results have been recorded with an ac input voltage of 85-135Vrms, an output voltage of 12V and an output current of 16A.

Unification of Buck-boost and Flyback Converter for Driving Cascaded H-bridge Multilevel Inverter with Single Independent DC Voltage Source

  • Kim, Seong-Hye;Kim, Han-Tae;Park, Jin-Soo;Kang, Feel-Soon
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.190-196
    • /
    • 2013
  • It presents a unification of buck-boost and flyback converter for driving a cascaded H-bridge multilevel inverter with a single independent DC voltage source. Cascaded H-bridge multilevel inverter is useful to make many output voltage levels for sinusoidal waveform by combining two or more H-bridge modules. However, each H-bridge module needs an independent DC voltage source to generate multi levels in an output voltage. This topological characteristic brings a demerit of increasing the number of independent DC voltage sources when it needs to increase the number of output voltage levels. To solve this problem, we propose a converter combining a buck-boost converter with a flyback converter. The proposed converter provides independent DC voltage sources at back-end two H-bridge modules. After analyzing theoretical operation of the circuit topology, the validity of the proposed approach is verified by computer-aided simulations using PSIM and experiments.

Design and Implementation of a Trigger Circuit for Xenon Flash Lamp Driver (제논 플래시 램프 구동장치를 위한 트리거 회로 설계 및 구현)

  • Song, Seung-Ho;Cho, Chan-Gi;Park, Su-Mi;Park, Hyun-Il;Bae, Jung-Su;Jang, Sung-Roc;Ryoo, Hong-Je
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.138-139
    • /
    • 2017
  • This paper describes the design and implementation of a trigger circuit which can be series connected with main pulse circuit for a xenon flash lamp driver. For generating high voltage, the trigger circuit is designed as an inductive energy storage pulsed power modulator with 2 state step-up circuit consisting of a boost converter and a flyback circuit. In order to guarantee pulse width, a resonant capacitor on the output side of the flyback circuit is designed. This capacitor limits the output voltage to protect the flyback switch. In addition, to protect another power supply of xenon flash lamp driver from trigger pulse, the high voltage transformer which can carry the full current of main pulse is designed. To verify the proposed design, the trigger circuit is developed with the specification of maximum 23 kV, 0.6 J/pulse output and tested with a xenon flash lamp driver consisting of a main pulse circuit and a simmer circuit.

  • PDF

Analysis, Design, Modeling, Simulation and Development of Single-Switch AC-DC Converters for Power Factor and Efficiency Improvement

  • Singh, Bhim;Chaturvedi, Ganesh Dutt
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.51-59
    • /
    • 2008
  • This paper addresses several issues concerning the analysis, design, modeling, simulation and development of single-phase, single-switch, power factor corrected AC-DC high frequency switching converter topologies with transformer isolation. A detailed analysis and design is presented for single-switch topologies, namely forward buck, flyback, Cuk, Sepic and Zeta buck-boost converters, with high frequency isolation for discontinuous conduction modes (DCM) of operation. With an awareness of modem design trends towards improved performance, these switching converters are designed for low power rating and low output voltage, typically 20.25W with 13.5V in DCM operation. Laboratory prototypes of the proposed single-switch converters in DCM operation are developed and test results are presented to validate the proposed design and developed model of the system.

Advanced Abnormal Over-current Protection with SuperFET® 800V MOSFET in Flyback converter

  • Jang, KyungOun;Lee, Wontae;Baek, Hyeongseok
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.332-333
    • /
    • 2018
  • This paper presents an advanced abnormal over-current protection with $SuperFET^{(R)}$ 800V MOSFET in Flyback converter. In advanced abnormal over-current protection, digital pattern generator is proposed to detect a steep di/dt current condition when secondary rectifier diode or the transformer is shorted. If current sensing signal is larger than current limit during consecutive switching cycle, Gate signal will be stopped for 7 internal switching periods. If the abnormal over-current maintains pattern, the controller goes into protection mode. The Advanced over-current protection has been implemented in a 0.35um BCDMOS process (ON Semiconductor process).

  • PDF

Primary side regulation of flyback converter using coaxial transformer (동축변압기를 적용한 플라이백 컨버터의 일차측 제어)

  • Kim, Dong-Won;Park, Joung-Hu
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.460-461
    • /
    • 2012
  • 플라이백 컨버터는 SMPS의 전원회로 중 가장 많이 쓰이고 있는 컨버터이다. 최근 들어 원가 절감을 위한 Primary Side Regulation(이하 PSR)기술이 활발히 진행 중이다. 이 기술의 단점 중 하나는 직접적으로 제어하는 전압이 출력전압이 아니라 보조권선 전압이므로 변압기 커플링에 따라 실제출력전압에 약간의 오차가 생길 수도 있다는 것이다. 본 논문은 이를 감안하여 플라이백 컨버터의 트랜스포머를 기존의 방식들이 아닌 동축권선 방식을 적용하여 만듦으로써 보다 우수한 커플링으로 인해 출력전압의 오차가 거의 없음을 보여준다. 간단한 PSR의 원리에 대해 설명하고 커플링 계수를 비교한 후 UC3844를 이용한 Flyback converter를 이용하여 검증하였다.

  • PDF

High Efficiency Resonant Asymmetrical Half-Bridge Flyback Converter (고효율 공진형 비대칭 하프브리지 플라이백컨버터)

  • Jeong, Gang-Youl;Yoo, Doo-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.81-94
    • /
    • 2010
  • This paper presents a high efficiency resonant asymmetrical half-bridge flyback converter. The primary half-bridge circuit of the converter operates by a soft-switching type using the asymmetrical pulse-width modulation (PWM) method with the resonant capacitance and transformer leakage inductance. The secondary flyback circuit of the proposed converter utilizes a synchronous rectifier, which operates by a new voltage-driven method with a simple drive circuit. Thus the proposed converter improves the total efficiency. This paper explains the operational principle of the proposed converter by each mode and shows the converter design consideration and a design example for the prototype converter, respectively. After that, the proposed simple driving technique of the synchronous rectifier by a voltage-driven method is explained, briefly. The designed prototype converter has wide input voltage (AC $V_{in,rms}$=75~265[V]), 5[V] DC output voltage, and 100[W] output power. To verify the excellent performance of the proposed converter, the designed prototype is implemented and experimented. The good performance of the proposed converter is shown through the experimental results.