• Title/Summary/Keyword: Flyback transformer

Search Result 99, Processing Time 0.023 seconds

Analysis of Leakage Inductance for Toroidal Type Flyback Transformer (토로이달 타입 플라이백 변압기의 누설 인덕턴스 해석)

  • Park, Chang-Soo;Kang, Byeong-Geuk;Shin, Kyoung-Gu;Chung, Se-Kyo
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.180-181
    • /
    • 2013
  • This paper represents an analysis of a leakage inductance for a toroidal type flyback transformer. The equation to calculate the leakage inductance is derived using its MMF diagram. The analysis for the different types of the cores and winding structures is also provided using the Maxwell 3D simulation. The winding structures minimizing the leakage inductance are finally discussed, from the simulation results.

  • PDF

A New High Efficiency PWM Single-Switch Isolated Converter

  • Park, Ki-Bum;Kim, Chong-Eun;Moon, Gun-Woo;Youn, Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.289-292
    • /
    • 2007
  • The flyback converter is one of the most attractive isolated converters in small power applications because of its simple structure. However, it suffers from high device stress, large transformer size, and high voltage stress across switch and diode. To solve these problems a new cost-effective PWM single-switch isolated converter is proposed. The proposed converter has no output filter inductor, reduced voltage stress on the secondary devices, and reduced transformer size. Moreover, the switch turnoff loss is reduced and no dissipative snubber across the secondary diode is required. Therefore, it features a simple structure, low cost, and high efficiency. The operational principle and characteristics of proposed converter are presented compared with flyback converter and verified experimentally.

  • PDF

Current Sensorless MPPT Control Method for Dual-Mode PV Module-Type Interleaved Flyback Inverters

  • Lee, June-Hee;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.54-64
    • /
    • 2015
  • This paper presents a current sensorless maximum power point tracking (MPPT) control method for dual-mode photovoltaic (PV) module-type interleaved flyback inverters (ILFIs). This system, called the MIC (Module Integrated Converter), has been recently studied in small PV power generation systems. Because the MIC is an inverter connected to one or two PV arrays, the power system is not affected by problems with other inverters. However, since the each PV array requires an inverter, there is a disadvantage that the initial installation cost is increased. To overcome this disadvantage, this paper uses a flyback inverter topology. A flyback inverter topology has an advantage in terms of cost because it uses fewer parts than the other transformer inverter topologies. The MPPT control method is essential in PV power generation systems. For the MPPT control method, expensive dc voltage and current sensors are used in the MIC system. In this paper, a MPPT control method without current sensor where the input current is calculated by a simple equation is proposed. This paper also deals with dual-mode control. Simulations and experiments are carried out to verify the performance and effectiveness of the proposed current sensorless MPPT control method on a 110 [W] prototype.

Design and control of the SEPIC-Flyback converter for Fuel Cell generator system (연료전지 시스템용 SEPIC-Flyback Converter의 설계 및 제어)

  • Kang, Ku-Sam;Jang, Su-Jin;Lee, Tae-Won;Kim, Soo-Seok;Won, Chung-Yeun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.467-472
    • /
    • 2005
  • In this paper, design and control of the novel SEPIC-Flyback converter(SF converter) is developed as a possible converter for fuel cell system. This output characteristic of SF converter is similar to Buck-Boost converter in that it can step-up or step-down the voltage. With the small signal equivalent circuit modeling of SF converter, control-to-output transfer function is obtained. SF converter couples up the inductive type converter to capacitive type converter with one transformer, which has less ripple current than its respective one does. To verify the validity of the proposed converter, 500W, 100kHz converter is designed and tested. ZVS switching and active clamping are also tested in practice.

  • PDF

Bridgeless Flyback PFC Rectifier Using Single Magnetic Core and Dual Output Windings

  • Shin, Jong-Won;Baek, Jong-Bok;Cho, Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.145-146
    • /
    • 2011
  • In this paper, a bridgeless flyback power factor correction (PFC) rectifier which uses single magnetic core is proposed. The proposed PFC rectifiers utilize bidirectional switch to handle both positive and negative input voltage without bridge diodes. A transformer with dual output windings enables the rectifier dispense with any additional magnetic component. The operation of the proposed flyback PFC rectifier is analyzed, and its higher efficiency than its conventional counterpart is verified by experiment.

  • PDF

Cascaded H-bridge Multilevel Inverter employing Front-end Flyback Converter with Single Independent DC Voltage Source

  • Kim, Ki-Du;Bae, Gyou-Tak;Kang, Feel-Soon
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.197-201
    • /
    • 2013
  • Cascaded H-bridge multilevel inverter requires independent DC voltage sources to produce multi output voltage levels. When it needs to generate more levels in the output voltage wave, the number of independent DC voltage sources usually limits its extension. To solve this problem, we propose a cascaded H-bridge multilevel inverter employing a front-end flyback converter for unifying input DC voltage sources. After theoretical analysis of the proposed circuit, we verify the validity of the proposed inverter using computer-aided simulations and experiments.

Automotive HID Ballast System Using Planar Transformer (평면 변압기를 이용한 자동차용 고압방전등 안정기 시스템)

  • Lee, Jae-Hak
    • 전자공학회논문지 IE
    • /
    • v.43 no.3
    • /
    • pp.22-27
    • /
    • 2006
  • This paper presents the control system of high-efficiency automotive 35W metal-halide lamp ballast using the new control method and planar transformer. In this paper, the electronic ballast is designed so that digital control method by microcontroller can be applied to the electronic ballast for the lamp requirement and peripheral environment in order that metal-halide lamp, which has the complicated transient features, is to be applied to the automobile even if it has superior features in brightness, color rendering, light efficiency, and lifespan compared to the conventional halogen lamp. Also, the efficiency increase of the ballast is devised by being varied the switching frequency of Flyback Converter following the battery input voltage of the automobile. Being designed for high-frequency switching transformer of converter in planar form, reduction of loss, weight, overall size are realized and efficient power control in the automobile that had the limited energy and the limited space of battery is devised. The results of the proposed system is verified through various experiment results.

AC/DC Adaptor Utilizing a Transformer with a New Plastic Magnetic Core (새로운 플라스틱 자성 코어를 가진 변압기를 이용한 AC/DC Adaptor)

  • An, Tae-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.7
    • /
    • pp.406-412
    • /
    • 2002
  • This paper presents a novel transformer with a new plastic magnetic core for switching power supplies. The proposed plastic magnetic core was realized using a simple manufacturing process and it can be easily designed with various shapes, suggesting that the manufacturing cost of a power transformer can be reduced using the proposed plastic magnetic core. The possible application potentials of the proposed transformer a AC/DC adaptor utilizing a transformer with the plastic magnetic core are explored. The developed adaptor, that has a maximum power of 24W, switching frequency of 125kHz, and input voltage of 110/220V, has been successfully implemented. A maximum power conversion efficiency of the experimental converter was measured at 77%, and the output was regulated at 12V within 0.2% tolerance.

Two Stage High Step-Up Converter for Low Input Voltage and High Current Applications (낮은 입력전압, 대전류 응용을 위한 2단 구성 승압컨버터)

  • Noh, Young-Jae;Xu, Han;Kang, Cheol-Ha;Kim, Eun-Soo;Jang, Sang-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.507-515
    • /
    • 2012
  • DC-DC converter which composed of LLC resonant converter, operated by fixed switching frequency with fixed duty cycle (50%), and flyback converter to provide constant output voltage($400V_{DC}$) with variation of input voltage($30-60V_{DC}$) is proposed in this paper. To obtain constant output voltage($400V_{DC}$), flyback converter is not operated in case of above the maximum input voltage($60V_{DC}$) and operated as the input voltage decreases to below 60VDC. Therefore, flyback converter can be designed to the 50% power rating of the maximum power in the proposed DC-DC converter. Operation modes and voltage gain characteristics were analyzed and a 360W prototype converter was tested to verify the proposed converter.

High Power Factor Three-phase AC-DC Flyback Converter Module Using Zero Voltage Switching (영전압 스위칭을 이용한 고역률 3상 AC-DC Flyback 컨버터 모듈)

  • Lee, J.P.;Choi, J.Y.;Song, J.H.;Choy, I.;Yoon, T.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2701-2703
    • /
    • 1999
  • A new mode of parallel operation of a modular 3-phase AC-DC Flyback converter for high power factor correction along with tight regulation is presented in this thesis. The converter offers input/output transformer isolation for safety, a unity input power factor for minimum reactive power, high efficiency and high power density for minimum weight and volume. Compared with previously developed 3-phase two-stage power converter, the advantage of the proposed converter does not require expensive high voltage and high current devices that are normally needed in popular boost type 3-phase converter. In this paper, a detailed small signal analysis of the modular 3-phase AC-DC flyback converter is provided for control purposes and also experimental results are included to confirm the validity of the analysis.

  • PDF