• 제목/요약/키워드: Fly slag

검색결과 599건 처리시간 0.029초

고농도의 질소와 인제거를 위한 Struvite 정석반응의 정석재로서 산업부산물의 이용 가능성 (Feasibility of Industrial by-products as a Seed Crystal of Struvite Crystallization for the Removal of Highly Concentrated Nitrogen and Phosphorus)

  • 임수빈
    • 한국물환경학회지
    • /
    • 제26권4호
    • /
    • pp.664-672
    • /
    • 2010
  • This study was performed to evaluate the feasibility of industrial by-products such as converter slag, olivine, red mud and fly ash as a seed crystal of struvite crystallization for the removal of highly concentrated $NH_4-N$ and $PO_4-P$. In the kinetic experiments, more than 90% of $NH_4-N$ and $PO_4-P$ was eliminated by struvite crystallization within 30 minutes of reaction time. The pH range in meta-stable region of struvite crystallization was found to be pH 7.0~9.0 under the Mg:N:P=1:1:1 equi-molar condition with 100 mg/L of $NH_4-N$. Total removal efficiencies of $NH_4-N$ and $PO_4-P$ by both struvite precipitation and crystallization were increased with the increase of pH. Removal efficiencies of $NH_4-N$ and $PO_4-P$ were significantly enhanced by struvite crystallization using industrial by-products as a seed crystal compared with those by struvite precipitation without seed crystal. Red mud, converter slag, olivine and fly ash enhanced the removal efficiencies of $NH_4-N$ by 40.9%, 37.7%, 28.4% and 16.4%, respectively. Removal efficiencies of $PO_4-P$ for converter slag, red mud, fly ash, olivine were increased by 3.7 times, 2.6 times, 72.4% and 68.0%, respectively. Converter slag and red mud showed higher feasibility as a seed crystal than others for the removal of highly concentrated $NH_4-N$ and $PO_4-P$. In particular, converter slag might have a high capacity of phosphorus removal.

Mechanical and durability properties of fly ash and slag based geopolymer concrete

  • Kurtoglu, Ahmet Emin;Alzeebaree, Radhwan;Aljumaili, Omar;Nis, Anil;Gulsan, Mehmet Eren;Humur, Ghassan;Cevik, Abdulkadir
    • Advances in concrete construction
    • /
    • 제6권4호
    • /
    • pp.345-362
    • /
    • 2018
  • In this paper, mechanical and short-term durability properties of fly ash and slag based geopolymer concretes (FAGPC-SGPC) were investigated. The alkaline solution was prepared with a mixture of sodium silicate solution ($Na_2SiO_3$) and sodium hydroxide solution (NaOH) for geopolymer concretes. Ordinary Portland Cement (OPC) concrete was also produced for comparison. Main objective of the study was to examine the usability of geopolymer concretes instead of the ordinary Portland cement concrete for structural use. In addition to this, this study was aimed to make a contribution to standardization process of the geopolymer concretes in the construction industry. For this purpose; SGPC, FAGPC and OPC specimens were exposed to sulfuric acid ($H_2SO_4$), magnesium sulfate ($MgSO_4$) and sea water (NaCl) solutions with concentrations of 5%, 5% and 3.5%, respectively. Visual inspection and weight change of the specimens were evaluated in terms of durability aspects. For the mechanical aspects; compression, splitting tensile and flexural strength tests were conducted before and after the chemical attacks to investigate the residual mechanical strengths of geopolymer concretes under chemical attacks. Results indicated that SGPC (100% slag) is stronger and durable than the FAGPC due to more stable and strong cross-linked alumina-silicate polymer structure. In addition, FAGPC specimens (100% fly ash) showed better durability resistance than the OPC specimens. However, FAGPC specimens (100% fly ash) demonstrated lower mechanical performance as compared to OPC specimens due to low reactivity of fly ash particles, low amount of calcium and more porous structure. Among the chemical environments, sulfuric acid ($H_2SO_4$) was most dangerous environment for all concrete types.

Strength Development and Carbonation Characteristics of Slag Cement/Class C Fly Ash blended CO2 Injection Well Sealant

  • Kim, Tae Yoo;Hwang, Kyung-Yup;Hwang, Inseong
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권2호
    • /
    • pp.29-37
    • /
    • 2016
  • CO2 injection well sealant is vulnerable to supercritical CO2 (scCO2) exposure. To develop an alternative to the conventional sealant system (class G cement/class F fly ash), the performance of slag cement (SPC) systems containing class F fly ash (FFA) or class C fly ash (CFA) was evaluated and compared with the conventional sealant under scCO2 conditions. All sealant systems showed an immediate increase in compressive strength upon scCO2 exposure and, at 37.6 MPa, SPC/CFA showed the highest compressive strength after 14 days, which was much higher than the 29.8 MPa of the conventional sealant system. Substantial decreases in porosity were observed in all sealant systems, which were partly responsible for the increase in strength. Carbonation reactions led to pH decreases in the tested sealants from 12.5 to 10~11.6. In particular, the greatest decrease in pH in slag cement/class C fly ash probably supported relatively sustainable alkali activation reactions and the integrity of cement hydrates in this system. XRD revealed the presence of CaCO3 and a decrease in the content of cement hydrates in the tested sealants upon scCO2 exposure. TGA demonstrated a greater increase of CaCO3 and calcium-silicate-hydrate phases in SPC/CFA than in the conventional sealant upon scCO2 exposure.

콘크리트 혼화재료로서의 메타카올린의 기초적인 특성 연구 (A Fundamental Study of Metakaolin as a Pozzolanic Material)

  • 김용태;안태호;강범구;이정율;김병기
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.281-286
    • /
    • 2001
  • The utilization of metakaolin as a pozzolanic material for mortar and concrete has received considerable attention in recent years. This paper estimates the fundamental properties of metakaolin as a pozzolanic material in view of fluidity and compressive strength of cement paste and mortar in comparison of silica fume, fly ash and slag. The results show that in order to obtain the same initial fluidity, metakaolin needs higher dosage of PNS superplasticizer than fly ash and slag, however, less dosage than silica fume. In view of compressive strength of mortar, metakaolin exhibits much higher compressive strength than fly ash and slag, and similar compressive strength with silica-fume when 10 % of cement is replaced with a pozzolanic material.

  • PDF

Role of ingredients for high strength and high performance concrete - A review

  • Parande, A.K.
    • Advances in concrete construction
    • /
    • 제1권2호
    • /
    • pp.151-162
    • /
    • 2013
  • The performance characteristics of high-strength and high-performance concrete are discussed in this review. Recent developments in the field of high-performance concrete marked a giant step forward in high-tech construction materials with enhanced durability, high compressive strength and high modulus of elasticity particularly for industrial applications. There is a growing awareness that specifications requiring high compressive strength make sense only when there are specific strength design advantages. HPC today employs blended cements that include silica fume, fly ash and ground granulated blast-furnace slag. In typical formulations, these cementitious materials can exceed 25% of the total cement by weight. Silica fume contributes to strength and durability; and fly ash and slag cement to better finish, decreased permeability, and increased resistance to chemical attack. The influences of various mineral admixtures such as fly ash, silica fume, micro silica, slag etc. on the performance of high-strength concrete are discussed.

슬래그, 플라이애쉬, 제지슬러지애쉬로 제조한 콘크리트의 성상에 관한 기초적인 실험적연구 (An Experimental Study on the Properties of the Concrete made with Blast Furnace Slag, Fly-Ash or Paper Sludge-Ash)

  • 최정호;하상욱;허왕국;고상민;노강석;정관영;서성교
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.599-604
    • /
    • 1999
  • In recent years, problems of industrial solid wastes appear to be kind of national crises, caused by a sudden increase in their quantities, lack of disposal technique, and public discontent in installing plants for their disposal. This study is designed to investigate that pozzolana-based materials, such as blast furnace slag, fly-ash, paper sludge-ash, which are produced from industries as solid wastes, can be used as construction materials. The variations of concrete strength in function of compositional differences of raw materials including the wastes are studied experimentally. As a result, we find out that the blast furnace slag, the fly-ash, and the paper sludge-ash can be recycled as useful resources for replacement of cements by adjusting their substitution ratio.

  • PDF

플라이애쉬 및 고로슬래그를 치환한 라텍스 개질 콘크리트의 중성화 특성 (The Carbonation Property of Latex Modified Concretes with Fly ash and Blast Furnace Slag)

  • 정원경;홍창우;김경진;심도식;윤경구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.569-572
    • /
    • 2006
  • This study was performed to investigate the characteristics of carbonation for latex modified concrete with fly ash and blast furnace slag. The experimental variables consisted of ground granulated blast-furnace slag contents (0%, 30%, 50%), fly ash contents (0, 30%) latex contents (0, 5, 10, 15%). Two different methods of carbonation test such as $CO_2$ gas and 5% sulphuric acid digestion resistance test were varied in this study.

  • PDF

플라이 애쉬 및 고로시멘트를 사용한 중유동콘크리트의 공학적 특성에 관한 실험적 연구 (An Experimental Study on the Engineering Properties of Middle Fluidity Concrete using the Fly-ash and Portland Blast-Furnace Slag Cement)

  • 윤종기;나철성;송민섭;김재환;장종호;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.44-47
    • /
    • 2003
  • High flowing concrete has not spread whole in the normal concrete structure, because it requires special quality control technique. Recently owing to the lack of natural resources and reinforcement of environmental standard, the construction cost of cement is rapidly increased. Also ready mixed concrete industry has gone through various economical difficulty as the manufacture cost of concrete is increased. So, the purpose of this study is to evaluate the qualities of middle fluidity concrete using the fly-ash and portland blast-furnace slag cement in order to decrease the amount of cement and resolve the problem of the quality control of high flowing concrete and the manufacture cost. The results of this study show that it reduces the amount of addition of superplasticizer and develope properties of concrete to the use the fly-ash and portland blast-furnace slag cement.

  • PDF

저탄소 그린콘크리트의 물리·역학적 특성 (Physical and Mechanical Properties of Low Carbon Green Concrete)

  • 조일호;성찬용
    • 한국농공학회논문집
    • /
    • 제55권3호
    • /
    • pp.123-128
    • /
    • 2013
  • This study was performed to evaluate the slump flow, air content, setting time, compressive strength, adiabatic temperature rise and diffusion coefficient of chloride used ordinary portland cement, crushed coarse aggregate, crushed sand, river sand, fly ash, limestone powder, blast furnace slag powder and superplasticizer to find optimum mix design of low carbon green concrete for structures. The performances of low carbon green concrete used fly ash, limestone powder and blast furnace slag powder were remarkably improved. This fact is expected to have economical effects in the manufacture of low carbon green concrete for structures. Accordingly, the fly ash, limestone powder and blast furnace slag powder can be used for low carbon green concrete material.

저탄소 그린콘크리트의 내구 특성 (Durability Properties of Low Carbon Green Concrete)

  • 조일호;성찬용
    • 한국농공학회논문집
    • /
    • 제55권6호
    • /
    • pp.11-17
    • /
    • 2013
  • This study was performed to evaluate the chlorine ion penetration resistance, chemical resistance and freezing and thawing resistance used ordinary portland cement, crushed coarse aggregate, crushed sand, river sand, fly ash, limestone powder, blast furance slag powder and superplasticizer to find optimum mix design of low carbon green concrete for structures. The performance of low carbon green concrete used fly ash, limestone powder and blast furnace slag powder were remarkably improved. This fact is expected to have economical effects in the manufacture of low carbon green concrete for offshore structures. Accordingly, the fly ash, limestone powder and blast furnace slag powder can be used for offshore structure materials.