• 제목/요약/키워드: Flux-locked loop

검색결과 24건 처리시간 0.026초

소형 SQUID, 직접 되먹임 방식 전자회로, 고온초전도 SQUID 주사현미경의 개량 (Development of Small-sized SQUID and Direct-coupled Electronics for High-$T_c$ Scanning SQUID Microscope)

  • 백범;이승민;윤주환;김정구
    • Progress in Superconductivity
    • /
    • 제3권1호
    • /
    • pp.78-82
    • /
    • 2001
  • The spatial resolution of $high-T_{c}$ scanning SQUID microscope is limited by the washer size of SQUID and the gap distance between SQUID sensor and the sample. In this work, we tried to improve the spatial resolution of scanning SQUID microscope by reducing the size of SQUID sensor fabricated with $YBa_2$$Cu_3$$O_{7}$ thin film. Outer dimensions of the SQUiDs we tested are 24 $\mu\textrm{m}$ $\times$ $ 28\mu\textrm{m}$, $12 \mu\textrm{m}$ $\times$ $16\mu\textrm{m}$, $12\mu\textrm{m}$ x $12\mu\textrm{m}$, $10 \mu\textrm{m}$ $\times$ $10 \mu\textrm{m}$ each. To operate them in the flux-locked loop scheme, we used a direct-coupled electronics instead of using conventional electronics involving a modulation scheme. Since the direct-coupled feedback scheme does not require modulation current adjustment that poses as a practical difficulty in the SQUID operation in modulation-scheme, the direct feedback operation is rather simpler than the conventional modulation method. The resulting noise features were dominated by the noise of preamp in FLL electronics except that of the largest SQUID. The noise levels of SQUIDs are expected below 1$\times$$10^{-5}$ $\Phi_{0}$H $z^{1}$2/ (at 300 Hz), that is a typical noise level for SQUID made of $YBa_2$C $u_3$$O_{7}$ thin film. The data acquisition and motion-controlling parts were also improved, resulting in faster data acquisition rate and less vibration of the system.m.

  • PDF

Parallel-loop 검출코일을 가지는 단일층 YBCO dc-SQUID 자력계의 제작 및 특성 연구 (Fabrications and measurements of single layer YBCO dc-SQUID magnetometers designed with parallel-loop pickup coil)

  • 유권규;김인선;박용기
    • Progress in Superconductivity
    • /
    • 제5권1호
    • /
    • pp.45-49
    • /
    • 2003
  • We have designed and fabricated the single-layer high $T_{c}$ SQUID magnetometer consisting of a directly coupled grain boundary junction SQUID with an inductance of 100 pH and 16 nested parallel pickup coils with the outermost dimension of 8.8 mm ${\times}$ 8.8 mm. The magnetometer was formed from a YBCO thin film deposited on an STO(100) bicrystal substrate with a misorientation angle of $30^{\circ}$. The SQUID magnetometer was further improved by optimizing the multi-loop pickup coil design for use in unshielded environments. Typical characteristics of the dc SQUID magnetometer had a modulation voltage of 40 $\mu\textrm{V}$ and a white noise of $30fT/Hz^{1}$2/. The SQUID magnetometer exhibited a 1/f noise level at 10 Hz reduced by a factor of about 3 compared with that of the conventional solid type pickup coil magnetometers and a very stable flux locked loop operation in magnetically disturbed environments.s.

  • PDF

SRM의 회전자 위치추정 개선을 위한 PLL기법의 적용 (Improvement of Rotor Position Estimation of SRM using PLL technique)

  • 백원식;최경호;황돈하;김동희;김민희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.200-202
    • /
    • 2005
  • In this paper, improved rotor position estimation for position sensorless control system of the SRM (Switched Reluctance Motor) is presented. For more accurate rotor position estimation, the PLL (Phase Locked Loop) based position interpolation is adapted. In the current-flux-rotor position lookup table based rotor position estimation, the inherent current and flux-linkage ripple can cause the position estimation error. Instead of the conventional low-pass filter, the PLL based position interpolation technique is used for the better dynamic performance. The developed rotor position estimation scheme is realized using TMS320F2812 digital signal processor and prototype 1-hp SRM.

  • PDF

40-채널 SQUID 시스템의 제작 및 뇌자도 측정 (Construction and Operation of a 40-channel SQUID System for Neuromagnetic Measurements)

  • 이용호;김진목;권혁찬;이상길;임청무;박용기;박종철
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 1999년도 High Temperature Superconductivity Vol.IX
    • /
    • pp.27-32
    • /
    • 1999
  • We developed a 40-channel superconducting quantum interference device (SQUID) system for neuromagnetic measurements. The main features of the system are use of double relaxation oscillation SQUID (DROS), and planar gradiometer for measuring tangential field components. The DROSS with high flux-to-voltage transfers enabled direct readout of the SQUID output by room-temperature electronics and simple flux-locked loop circuits could be used for SQUID operation. The pickup coil is an integrated first-order planar gradiometer with a baseline of 40 mm. The average noise of the 40 channels is around 1.2 fT/cm/${\sqrt{Hz}}$ at 100 Hz, corresponding to the field noise of 5 fT/${\sqrt{Hz}}$ at 100 Hz, operated inside a magnetically shielded room. The 40-Channel system was applied to measure auditory-evoked neuromagnetic fields.

  • PDF

Construction of a 40-channel SQUID System and Its Application to Neuromagnetic Measurements

  • Lee, Y.H.;Kim, J.M.;Kwon, H.C.;Park, Y.K.;Park, J.C.;Lee, D.H.;Ahn, C.B.
    • Progress in Superconductivity
    • /
    • 제2권1호
    • /
    • pp.20-26
    • /
    • 2000
  • A 40-channel superconducting quantum interference device (SQUID) system was constructed for measuring neuromagnetic fields. Main features of the system are the use of double relaxation oscillation SQUIDs (DROSs), and planar gradiometers measuring magnetic field components tangential to the head surface. The DROSs with high flux-to-voltage transfers enabled direct readout of the SQUID output by room-temperature dc preamplifiers and simple flux-locked loop circuits could be used for SQUID operation. The pickup coil is an integrated first-order planar gradiometer with a baseline of 40 mm. Average noise level of the 40 channels is around 1.2 $fT/cm/{\surd}Hz$ at 100 Hz, corresponding to a field noise of 5 $fT/{\surd}Hz$, operated inside a magnetically shielded room. The SQUID insert was designed to have low thermal load, minimizing the loss of liquid helium. The constructed system was applied to measure auditory-evoked neuromagnetic fields.

  • PDF

A Low-noise Double Relaxation Oscillation SQUID Magnetometer for Measuring Magnetoencephalogram

  • 강찬석;이용호;권혁찬;김진목;윤병운
    • Progress in Superconductivity
    • /
    • 제3권2호
    • /
    • pp.151-158
    • /
    • 2002
  • We developed a useful SQUID magnetometer for biomagnetic applications, magnetoencepha-logram(MEG) and magnetocardiogram(MCG), etc. The SQUIDs are based on Double Relaxation Oscillation SQUID(DROS). DROS consists of two SQUIDs(signal SQUID and reference SQUID) in series, and a relaxation circuit of an inductor and a resistor. Specially we used single reference junction instead of the reference SQUID. The SQUIDs are based on hysteretic $Nb/AlO_{x}$Nb junctions, fabricated by using a simple four level process. Because DROS magnetometer has large flux-to-voltage transfer coefficient, we can use simple flux-locked loop electronics fur SQUID operation. When the DROS magnetometer was operated inside a magnetically shielded room, its average magnetic field noise was about 3 (equation omitted) at 100 Hz. This noise level is low enough to measure biomagnetic fields. In this paper, we describe noise characteristics of DROS magnetometer, depending on the operation condition . .

  • PDF

A Current-Fed Parallel Resonant Push-Pull Inverter with a New Cascaded Coil Flux Control for Induction Heating Applications

  • Namadmalan, Alireza;Moghani, Javad Shokrollahi;Milimonfare, Jafar
    • Journal of Power Electronics
    • /
    • 제11권5호
    • /
    • pp.632-638
    • /
    • 2011
  • This paper presents a cascaded coil flux control based on a Current Source Parallel Resonant Push-Pull Inverter (CSPRPI) for Induction Heating (IH) applications. The most important problems associated with current source parallel resonant inverters are start-up problems and the variable response of IH systems under load variations. This paper proposes a simple cascaded control method to increase an IH system's robustness to load variations. The proposed IH has been analyzed in both the steady state and the transient state. Based on this method, the resonant frequency is tracked using Phase Locked Loop (PLL) circuits using a Multiplier Phase Detector (MPD) to achieve ZVS under the transient condition. A laboratory prototype was built with an operating frequency of 57-59 kHz and a rated power of 300 W. Simulation and experimental results verify the validity of the proposed power control method and the PLL dynamics.

저성능 자기차폐실에서 64채널 DROS 2차 미분계 시스템의 잡음 특성 (Noise Characteristics of 64-channel 2nd-order DROS Gradiometer System inside a Poorly Magnetically-shielded Room)

  • 김진목;이용호;유권규;김기웅;권혁찬;박용기
    • Progress in Superconductivity
    • /
    • 제8권1호
    • /
    • pp.33-39
    • /
    • 2006
  • We have developed a second-order double relaxation oscillation SQUID(DROS) gradiometer with a baseline of 35 mm, and constructed a poorly magnetically-shielded room(MSR) with an aluminum layer and permalloy layers for magnetocardiography(MCG). The 2nd-order DROS gradiometer has a noise level of 20 $fT/{\surd}Hz$ at 1 Hz and 8 $fT/{\surd}Hz$ at 200 Hz inside the heavily-shielded MSR with a shielding factor of $10^3$ at 1 Hz and $10^4-10^5$ at 100 Hz. The poorly-shielded MSR, built of a 12-mm-thick aluminum layer and 4-6 permalloy layers of 0.35 mm thickness, is 2.4mx2.4mx2.4m in size, and has a shielding factor of 40 at 1 Hz, $10^4$ at 100 Hz. Our 64-channel second-order gradiometer MCG system consists of 64 2nd-order DROS gradiometers, flux-locked loop electronics, and analog signal processors. With the 2nd-order DROS gradiometers and flux-locked loop electronics installed inside the poorly-shielded MSR, and with the analog signal processor installed outside it, the noise level was measured to be 20 $fT/{\surd}Hz$ at 1 Hz and 8 $fT/{\surd}Hz$ at 200 Hz on the average even though the MSR door is open. This result leads to a low noise level, low enough to obtain a human MCG at the same level as that measured in the heavily-shielded MSR. However, filters or active shielding is needed fur clear MCG when there is large low-frequency noise from heavy air conditioning or large ac power consumption near the poorly-shielded MSR.

  • PDF

Molecular Beam Epitaxial Growth of Oxide Single Crystal Films

  • Yoon, Dae-Ho;Yoshizawa, Masahito
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1996년도 The 9th KACG Technical Annual Meeting and the 3rd Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.508-508
    • /
    • 1996
  • ;The growth of films have considerable interest in the field of superlattice structured multi-layer epitaxy led to realization of new devices concepts. Molecular beam epitaxy (MBE) with in situ observation by reflection high-energy electron diffraction (RHEED) is a key technology for controlled layered growth on the atomic scale in oxide crystal thin films. Also, the combination of radical oxygen source and MBE will certainly accelerate the progress of applications of oxides. In this study, the growth process of single crystal films using by MBE method is discussed taking the oxide materials of Bi-Sr-Ca-Cu family. Oxidation was provided by a flux density of activated oxygen (oxygen radicals) from an rf-excited discharge. Generation of oxygen radicals is obtained in a specially designed radical sources with different types (coil and electrode types). Molecular oxygen was introduced into a quartz tube through a variable leak valve with mass flowmeter. Corresponding to the oxygen flow rate, the pressure of the system ranged from $1{\;}{\times}{\;}10^{-6}{\;}Torr{\;}to{\;}5{\;}{\times}{\;}10^{-5}$ Torr. The base pressure was $1{\;}{\times}{\;}10^{-10}$ Torr. The growth of Bi-oxides was achieved by coevaporation of metal elements and oxygen. In this way a Bi-oxide multilayer structure was prepared on a basal-plane MgO or $SrTiO_3$ substrate. The grown films compiled using RHEED patterns during and after the growth. Futher, the exact observation of oxygen radicals with MBE is an important technology for a approach of growth conditions on stoichiometry and perfection on the atomic scale in oxide. The oxidization degree, which is determined and controlled by the number of activated oxygen when using radical sources of two types, are utilized by voltage locked loop (VLL) method. Coil type is suitable for oxygen radical source than electrode type. The relationship between the flux of oxygen radical and the rf power or oxygen partial pressure estimated. The flux of radicals increases as the rf power increases, and indicates to the frequency change having the the value of about $2{\times}10^{14}{\;}atoms{\;}{\cdots}{\;}cm^{-2}{\;}{\cdots}{\;}S^{-I}$ when the oxygen flow rate of 2.0 seem and rf power 150 W.150 W.

  • PDF