• Title/Summary/Keyword: Flux-Barrier

Search Result 96, Processing Time 0.026 seconds

The Study on the improvement of Characteristics of Permanent Magnet Synchronous Motor for Washing Machine (세탁기용 영구자석 동기전동기의 특성 향상에 관한 연구)

  • Jung, Dae-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.10
    • /
    • pp.47-53
    • /
    • 2015
  • IPMSM(Insert Permanent Magnet Synchronous Motor) is a very high degree of freedom in the design according to the permanent magnet insertion position. And the performance of IPMSM is affected a lot on barrier shape which determines the magnetic flux path from magnet. Thus the position of permanent magnet and the barrier shape has to be designed by considering both specification and operation condition. In the paper, the permanent magnet and barrier shape which is suitable for direct drive motor of washing machine has been studied. In addition, in order to verify the validity of the study, the test was evaluated by making a prototype motor.

Rotor Shape Design of Single Phase LSPM for Improvement of Start-up Characteristics and Efficiency (기동특성 및 효율 향상을 위한 Single-Phase LSPM의 회전자 형상 설계)

  • Kang, Min-Chul;Cho, Kwang-Jin;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.58-64
    • /
    • 2016
  • In this paper, the design of rotor shape was performed for improvement of start-up characteristics and efficiency in single-phase LSPM. In order to improve the start-up characteristics, shape of rotor aluminium cage bar was changed. Through arrangement of permanent magnets and installation of flux barriers, it was performed torque ripple reduction and efficiency improvement. Cogging torque and back-EMF is calculated by the no-load analysis, start-up time is calculated by the start-up state analysis, efficiency and torque ripple is calculated by steady state analysis. The characteristics of the motor were calculated through FEM.

The Effect of Surface Plasmon on Internal Photoemission Measured on Ag/$TiO_2$ Nanodiodes

  • Lee, Hyosun;Lee, Young Keun;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.662-662
    • /
    • 2013
  • Over the last several decades, innovative light-harvesting devices have evolved to achieve high efficiency in solar energy transfer. Research on the mechanisms for plasmon resonance is very desirable to overcome the conventional efficiency limits of photovoltaics. The influence of localized surface plasmon resonance on hot electron flow at a metal-semiconductor interface was observed with a Schottky diode composed of a thin silver layer on $TiO_2$. The photocurrent is generated by absorption of photons when electrons have enough energy to travel over the Schottky barrier and into the titanium oxide conduction band. The correlation between the hot electrons and the surface plasmon is confirmed by matching the range of peaks between the incident photons to current conversion efficiency (IPCE, flux of collected electrons per flux of incident photons) and UV-Vis spectra. The photocurrent measured on Ag/$TiO_2$ exhibited surface plasmon peaks; whereas, in contrast to the Au/$TiO_2$, a continuous Au thin film doesn't exhibit surface plasmon peaks. We modified the thickness and morphology of a continuous Ag layer by electron beam evaporation deposition and heating under gas conditions and found that the morphological change and thickness of the Ag film are key factors in controlling the peak position of light absorption.

  • PDF

추력 30톤급 연소기의 냉각 성능

  • Cho, Won-Kook;Lee, Soo-Yong;Cho, Gwang-Rae
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.197-204
    • /
    • 2004
  • A design of regenerative cooling system of 30 ton level thrust combustion chamber for ground test has been performed. The 1-D design code has been validated by comparing with the heat flux of the NAL calorimeter for high chamber pressure and water-cooling performance of the ECC engine of MOBIS. The present design code has been confirmed to predict accurately the heat flux and water-cooling performance for high chamber pressure condition. The maximum hot-gas-side wall temperature is predicted to be about 720 K without thermal barrier coating and the coolant-side wall temperature is less than the coking temperature of RP-1. The coolant temperature rises nearly 100 K with thermal barrier coating when Jet-A1 is used as coolant.

  • PDF

Analysis on Contaminant Transport according to the Embedded Depth of Vertical Barrier of Offshore Landfill (해상 폐기물매립지 연직차수벽체 근입심도에 따른 오염물질 이동특성 분석)

  • Park, Haeyong;Oh, Myounghak;Kwon, Osoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.8
    • /
    • pp.29-37
    • /
    • 2016
  • In order to prevent leakage of contaminants in offshore landfill, vertical barrier should be installed. Vertical barrier should be installed at designed depth of seabed to prevent the horizontal transport of contaminant in the subsurface. In this study, the seepage and contaminant transport in the subsurface according to embedded depth of vertical barrier were analyzed by using 2-D finite element analysis program SEEP/W and 3-D finite difference analysis program Visual Modflow. Numerical modelling results show that seepage flux and contaminant transport in seabed was greatly reduced when vertical barrier was installed at certain depth of low permeable layer. Therefore, the determination of minimum embedded depth for preventing contaminant leakage is helpful to design the economical vertical barrier.

Demonstration of rapid single-flux-quantum RS flip-flop using YBCO/Co-YBCO/YBCO ramp-edge Josephson junction with and without ground plane (YBCO/Co-YBCO/YBCO ramp-edge 접합을 이용한 RS flip-flop 회로 제작과 동작)

  • Kim, Jun-Ho;Sung, Geon-Yong;Park, Jong-Hyeok;Kim, Chang-Hun;Jung, Gu-Rak;Hahn, Taek-Sang;Kang, Jun-Hui
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.189-192
    • /
    • 2000
  • We fabricated rapid single-flux-quantum RS flip-flop circuits with and without Y$_1$Ba$_2$Cu$_3$O$_{7-{\delta}}$(YBCO) ground plane. The circuit consists of SNS-type ramp-edge Josephson junctions that have cobalt-doped YBCO and Sr$_2$AITaO$_6$(SAT) for barrier layer and insulator layer, respectively. The fabricated Josephson junction showed a typical RSJ-like current-voltage(I-V) characteristics above 50K. We sucessfuly demonstrated RS flip-flop at temperatures around 50K. The RS flip-flop fabricated on ground plane showed more definite set and reset state in voltage-flux(V-${\phi}$) modulation curve for read SQUID, which may be attributed to a shielding effect of the YBCO ground plane.

  • PDF

Recent progress in supported liquid membrane technology: stabilization and feasible applications

  • Molinari, Raffaele;Argurio, Pietro
    • Membrane and Water Treatment
    • /
    • v.2 no.4
    • /
    • pp.207-223
    • /
    • 2011
  • Supported Liquid Membranes (SLMs) have been widely studied as feasible alternative to traditional processes for separation and purification of various chemicals both from aqueous and organic matrices. This technique offers various advantages like active transport, possibility to use expensive extractants, high selectivity, low energy requirements and minimization of chemical additives. SLMs are not yet used at large scale in industrial applications, because of the low stability. In the present paper, after a brief overview of the state of the art of SLM technology the facilitated transport mechanisms of SLM based separation is described, also introducing the small and the big carrousel models, which are employed for transport modeling. The main operating parameters (selectivity, flux and permeability) are introduced. The problems related to system stabilization are also discussed, giving particular attention to the influence of membrane materials (solid membrane support and organic liquid membrane (LM) phase). Various approaches proposed in literature to enhance SLM stability are also reviewed. Modification of the solid membrane support, creating an additional layer on membrane surface, which acts as a barrier to LM phase loss, increases system stability, but the membrane permeability, and then the flux, decrease. Stagnant Sandwich Liquid Membrane (SSwLM), an implementation of the SLM system, results in both high flux and stability compared to SLM. Finally, possible large scale applications of SLMs are also reviewed, evidencing that if the LM separation process is opportunely carried out (no production of byproducts), it can be considered as a green process.

Coupled Field Circuit Analysis for Characteristic Comparison in Barrier Type Switched Reluctance Motor

  • Lee J.Y.;Lee G.H.;Hong J.P.;Hur J.;Kim Y.K.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.267-271
    • /
    • 2005
  • This paper deals with two kinds of novel shape switched reluctance motors (SRM) with magnetic barriers in order to improve operating performances of prototype. The magnetic barriers make rotor poles more saturated, and consequently inductance profiles are distorted. The changed inductance affects input current shape and eventually torque characteristics. In order to analyze the complicated flux pattern of the SRM with magnetic barriers and its terminal characteristics simultaneously, coupled field circuit modeling method is used. The finite element method is used to model the nonlinear magnetic field, and coupled to the circuit model of the SRM overall system. After experimental results are presented to prove the accuracy of the method, the several analysis results are compared, and the improved rotor shape is presented.