• Title/Summary/Keyword: Flux prediction

Search Result 341, Processing Time 0.029 seconds

Study on Pressure Drop Characteristics in Multi-Channel Tubes for Automotive Condenser (자동차 응축기용 다채널관의 압력강하 특성에 관한 연구)

  • Jeon, Chang Duk;Chung, Jae Won;Lee, Jinho;Kang, Shin Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.881-892
    • /
    • 1999
  • Experiment was performed to study the characteristics of pressure drop of multi-channel tubes for automotive condenser using HFC-134a. Single phase liquid and two phase flow pressure drop were measured in one rectangular plain and three micro-fin tubes with 10 channels. Data are presented for the following range of variables: mass flux(200 to $600kg/m^2s$), and inlet saturation pressure of the refrigerant(1.0 and 1.6MPa). For subcooled flow, pressure drops are 10% and 12% higher than that predicted by the Petukhov equation with hydraulic diameter respectively. Two-phase flow pressure drop are compared with the previously proposed correlations, and well predicted by modified correlation that was derived from Traviss correlation. and correlated within -30~+20%. Also experimental data are correlated within -56%~+18% by Webb's prediction method based on the equivalent mass velocity concept originally proposed by Akers et al.

Comparative Study of the Flight Test Data and the Prediction Results of PLF Temperature of KSLV-I Using CFD (전산유동해석 기법을 이용한 KSLV-I PLF 구조물 온도 해석 및 비행시험 자료 비교)

  • Kim, Young-Hoon;Ok, Ho-Nam;Kim, In-Sun
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.35-41
    • /
    • 2010
  • The temperature of the flight objects in high speed increases due to the aerodynamic heating. MINIVER and CFD approach are used to predict the aerodynamic heating conditions of KSLV-I. MINIVER is based on the empirical method. And the CFD approach predicts the aerodynamic heating conditions after the analysis of the surface temperature and the surface heat flux directly. In this study, the aerodynamic heating conditions using CFD approach are considered. The PLF temperature for these aerodynamic heating conditions is compared with the flight test data of KSLV-I.

Ignition Transient Investigation of Rocket Motor

  • Chang, Suk-Tae;Sam M. Han;John C. Chai
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.45-54
    • /
    • 2000
  • Ignition transient is a. very rapid process lasting only in the order of 100 milliseconds and therefore it is difficult to measure all relevant ballistic properties. Numerical simulation is thus useful to quantify some of these hard to measure flow and ballistic properties. One-dimensional model was employed to study the effects of aging using simplified aging scenarios for both N-H sustainer and booster motors. Also the effects of newly designed igniter on the ignition of N-H sustainer was simulated. Radiation effects could be significant in terms of energy flux increase to the propellant surface and the energy exchange between the combustion gas itself. One dimension implementation of radiation showed significant effects for rear-mounted igniter. Implementation of radiation effects into 2-D axi-symmetric numerical model was completed and its effects on the N-H sustainer were examined. To have a reliable prediction of computer model on ignition transient, accurate chemical property data on the propellant and igniter gas are required. It was found that such property data on aged N-H motors are not available. Chemical aging model can be used to predict to some degree of accuracy effects of aging on chemical and mechanical properties. Such a model was developed, albeit 2-dimensional, to study migration of moisture through a representative solid rocket motor configuration.

  • PDF

A Numerical Prediction of Pollutant Material Budget during the Flood and Dry Season in Gwangyang Bay (광양만의 홍수기 및 갈수기의 오염물질수지 예측)

  • Kim, Jin-Hyuk;Lee, In-Cheol;Yoon, Han-Sam
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.25-31
    • /
    • 2009
  • To predict pollutants during the flood and dry season in Gwangyang Bay, the net-fluxes and pollutant material budgets of COD, T-N, and T-P were calculated in Gwangyang Bay using a 2-D hydrodynamic model. Calculating the net-flux for each area in Gwangyang Bay showed that the net-fluxes in regions IV, V, and VII were increasing, but those of regions II, III, and VI were decreasing. In budget calculations for COD, T-N, and T-P in Gwangyang Bay, it was estimated that during the dry season the COD is approximately 1.6 times higher than during the flood season. The T-N during the flood season is approximately 7 times higher than during the dry season. However, the material budget for T-P in Gwangyang Bay predicted that it is almost nonexistent. Moreover, the central part of Gwangyang Bay (Region IV) has the highest material budget of overall pollutants.

Thermally-induced Mechanical Behavior of the Press-fitted Cylindrical Structure (죄임새 결합된 원통구조물의 열전도에 의한 기계적 특성변화)

  • 김선민;이선규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.139-148
    • /
    • 1998
  • Internal and external heat sources will cause to deform to machine elements in the contact joint of structure, which results in the change of contact pressure distribution different from initial assembly. Heat induced variations of contact pressure will change the static and dynamic properties such as contact stiffness, damping as well as contact heat conduction in the structure In order to design and control the intelligent machine tool operating in variant conditions more sophisticatedly, the good prediction for the changes of prescribed properties are strongly required especially in the contact elements adjacent to the rotational or linear bearing. This paper presents some computational and experimental results in regard to static and dynamic characteristics of the press-fitted bush and shaft assembly which is a model of the bearing innerrace and shaft assembly. In the condition of heat generation on the outer surface of the bush, the effects of changes in the negative clearance and the heat flux on pressure distribution and dynamic properties are investigated. Results of this study show that the edge effect of the bush and the initial clearance have effects on the transient dynamic characteristics significantly.

  • PDF

Numerical Study of High Resolution Schemes for GH2/GO2 Rocket Combustor using Single Shear Coaxial Injector (단일 전단 동축 분사기를 가지는 GH2/GO2 로켓 연소기의 고해상도 수치해석)

  • Jeong, Seung-Min;Um, Jae-Ryeong;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.72-83
    • /
    • 2018
  • In this study, a series of CFD analyses were carried out for a hydrogen rocket combustor with a single shear coaxial injector. A hybrid RANS/LES approach was used for the turbulent combustion analysis with a two-dimensional axisymmetric configuration. Three reaction mechanisms, three spatial discretization methods, and three levels of grid resolution were compared to determine an appropriate CFD approach. The performance of the CFD prediction were investigated by comparing the wall heat flux with experimental data. Investigation of the flow field results provides an insight into the characteristics of the turbulent reacting flow of a rocket combustor with a shear coaxial injector.

Prediction Method for Thermal Destruction of Internal Insulator in Solid Rocket Motor (고체추진기관 연소관단열재의 열파괴 예측기법)

  • Ji-Yeul Bae;In Sik Hwang;Yoongoo Kang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.27 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • This paper investigated the method to predict a thermal response of internal insulation in a solid rocket motor considering both thermal decomposition and ablation. Changes in properties due to the thermal decomposition, swelling of char layer and movement of decomposition gases inside the material were considered during a modeling. And radiative/convective heat flux from the exhaust gas were applied as boundary conditions, while the chemical ablation of the material surface is modeled with algebraic equations. Test SRM with thermocouples was solved for a validation purpose. The results showed that predicted temperatures have identical trends and values compared to the experimental values. And an error of predicted thermal destruction depth was around 0.1 mm.

Diameter Evaluation for PHWR Pressure Tube Based on the Measured Data (측정 데이터 기반 중수로 압력관 직경평가 방법론 개발)

  • Jong Yeob Jung;Sunil Nijhawan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.27-35
    • /
    • 2023
  • Pressure tubes are the main components of PHWR core and serve as the pressure boundary of the primary heat transport system. However, because pressure tubes have changed their geometrical dimensions under the severe operating conditions of high temperature, high pressure and neutron irradiation according to the increase of operation time, all dimensional changes should be predicted to ensure that dimensions remain within the allowable design ranges during the operation. Among the deformations, the diameter expansion due to creep leads to the increase of bypass flow which may not contribute to the fuel cooling, the decrease of critical channel power and finally the deration of the power to maintain the operational safety margin. This study is focused on the modeling of the expansion of the pressure tube diameter based on the operating conditions and measured diameter data. The pressure tube diameter expansion was modeled using the neutron flux and temperature distributions of each fuel channel and each fuel bundle as well as the measured diameter data. Although the basic concept of the current modeling approach is simple, the diameter prediction results using the developed methodology showed very good agreement with the real data, compared to the existing methodology.

Experimental and numerical assessment of helium bubble lift during natural circulation for passive molten salt fast reactor

  • Won Jun Choi;Jae Hyung Park;Juhyeong Lee;Jihun Im;Yunsik Cho;Yonghee Kim;Sung Joong Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1002-1012
    • /
    • 2024
  • To remove insoluble fission products, which could possibly cause reactor instability and significantly reduce heat transfer efficiency from primary system of molten salt reactor, a helium bubbling method is employed into a passive molten salt fast reactor. In this regard, two-phase flow behavior of molten salt and helium bubbles was investigated experimentally because the helium bubbles highly affect the circulation performance of working fluid owing to an additional drag force. As the helium flow rate is controlled, the change of key thermal-hydraulic parameters was analyzed through a two-phase experiment. Simultaneously, to assess the applicability of numerical model for the analysis of two-phase flow behavior, the numerical calculation was performed using the OpenFOAM 9.0 code. The accuracy of the numerical analysis code was evaluated by comparing it with the experimental data. Generally, numerical results showed a good agreement with the experiment. However, at the high helium injection rates, the prediction capability for void fraction of helium bubbles was relatively low. This study suggests that the multiphaseEulerFoam solver in OpenFOAM code is effective for predicting the helium bubbling but there exists a room for further improvement by incorporating the appropriate drag flux model and the population balance equation.

Analysis of the Pathways and Travel Times for Groundwater in Volcanic Rock Using 3D Fracture Network (화산암질 암반에서 3차원 균열망 모델을 이용한 지하수 유동경로 및 유동시간 해석)

  • 박병윤;김경수;김천수;배대석;이희근
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.42-58
    • /
    • 2001
  • In order to protect the environment from waste disposal activities, the prediction of the flux and flow paths of the contaminants from underground facilities should be assessed as accurately as possible. Especially, the prediction of the pathways and travel times of the nuclides from high level radioactive wastes in a deep repository to biosphere is one of the primary tasks for assessing the ultimate safety and performance of the repository. Since the contaminants are mainly transported with groundwater along the discontinuities developed within rock mass, the characteristics of groundwater flow through discontinuities is important for the prediction of contaminant fates as well as safety assessment of a repository. In this study, the actual fracture network could be effectively generated based on in situ data by separating geometric parameter and hydraulic parameter. The calculated anisotropic hydraulic conductivity was applied to a 3D porous medium model to calculate the path flow and travel time of the large studied area with the consideration of the complex topology in the area. Using the model, the pathways and travel times for groundwater were analyzed. From this study, it was concluded that the suggested techniques and procedures for predicting the pathways and travel times of groundwater from underground facilities to biosphere is acceptable and those can be applied to the safety assessment of a repository for radioactive wastes.

  • PDF