In this study, based on the saturation magnetic flux density experimental values (Bs) of 622 Fe-based bulk metallic glasses (BMGs), regression models were applied to predict Bs using artificial neural networks (ANN), and prediction performance was evaluated. Model performance evaluation was investigated by using the F1 score together with the coefficient of determination (R2 score), which is mainly used in regression models. The coefficient of determination can be used as a performance indicator, since it shows the predicted results of the saturation magnetic flux density of full material datasets in a balanced way. However, the BMG alloy contains iron and requires a high saturation magnetic flux density to have excellent applicability as a soft magnetic material, and in this study F1 score was used as a performance indicator to better predict Bs above the threshold value of Bs (1.4 T). After obtaining two ANN models optimized for the R2 and F1 score conditions, respectively, their prediction performance was compared for the test data. As a case study to evaluate the prediction performance, new Fe-based BMG datasets that were not included in the training and test datasets were predicted using the two ANN models. The results showed that the model with an excellent F1 score achieved a more accurate prediction for a material with a high saturation magnetic flux density.
투과증발공정에서 polydimethylsiloxane(PDMS)막에 대한 용매의 수착특성과 투과 플럭스를 예측하는 방법을 제시하였다. 이 방법을 이용하여 chloroform, toluene, methoanol, n-butanol의 수착량과 투과 플럭스를 계산하였으며, 계산값과 실험값을 비교하였다. 팽윤을 촉진시키는 정용매(good solvent)인 toluene과 chloroform의 경우 계산된 수착량과 투과 플럭스는 실험값과 잘 일치하였다. 막의 밀도가 작을수록 수착량과 투과 플럭스는 증가하였다. 팽윤을 억제시키는 부용매(poor solvent)인 methanol, n-butanol의 경우는 실험값과 상당한 오차가 있었다. 따라서, 본 미케니즘에 의해 PDMS막에 대한 정용매의 수착량과 투과 플럭스는 실험에 의하지 않고도 이론적으로 예측할 수 있는 가능성을 보여주었다.
An experimental study on critical heat flux (CHF) has been performed in an internally heated vertical annulus with non-uniform heating. The CHF data for the chopped cosine heat flux have been compared with those for uniform heat flux obtained from the previous study of the authors, in order to investigate the effect of axial heat flux distribution on CHF. The local CHF with the parameters such as mass flux and critical quality shows an irregular behavior. However, the total critical power with mass flux and the average CHF with critical quality are represented by a unique curve without the irregularity. The effect of the heat flux distribution on CHF is large at low pressure conditions but becomes rapidly smaller as the pressure increases. The relationship between the critical quality and the boiling length is represented by a single curve, independent of the axial heat flux distribution. For non-uniform axial heat flux distribution, the prediction results from Doerffer et al.'s and Bowling's CHF correlations have considerably large errors, compared to the prediction for uniform heat flux distribution.
Forward osmosis (FO) process is a chemical potential driven process, where highly concentrated draw solution (DS) is used to take water through semi-permeable membrane from feed solution (FS) with lower concentration. Recently, commercial FO membrane modules have been developed so that full-scale FO process can be applied to seawater desalination or water reuse. In order to design a real-scale FO plant, the performance prediction of FO membrane modules installed in the plant is essential. Especially, the flux prediction is the most important task because the amount of diluted draw solution and concentrate solution flowing out of FO modules can be expected from the flux. Through a previous study, a theoretical based FO module model to predict flux was developed. However it needs an intensive numerical calculation work and a fitting process to reflect a complex module geometry. The idea of this work is to introduce deep learning to predict flux of FO membrane modules using 116 experimental data set, which include six input variables (flow rate, pressure, and ion concentration of DS and FS) and one output variable (flux). The procedure of optimizing a deep learning model to minimize prediction error and overfitting problem was developed and tested. The optimized deep learning model (error of 3.87%) was found to predict flux better than the theoretical based FO module model (error of 10.13%) in the data set which were not used in machine learning.
A critical heat flux (CHF) prediction method using an artificial neural network (ANN) was evaluated for application to the high-heat-flux (HHF) subcooled flow boiling. The developed ANN predictions were compared with the experimental database consisting of a total of 3069 CHF data points. Also, the prediction performance by the ANN was compared with those by mechanistic models and a look up table technique. The parameter ranges of the experimental data are: $0.33{\leq}D{\leq}37.5mm$, $0.002{\leq}L{\leq}4m$, $0.37{\leq}G{\leq}134Mg/m^2s$, $0.1{\leq}P{\leq}20MPa$, $50\leq{\Delta}h_{sub,in}\leq1660kJ/kg$, and $1.1{\leq}q_{CHF}\leq276MW/m^2$. $276MW/m^2$. It was found that 91.5% of the total data points were predicted within $a{\pm}20%$ error band, which showed the best prediction performance among the existing CHF prediction methods considered.
발사체 열환경 설계를 위해서 여러 종류의 태양열 모델을 비교 검토하였으며, 측정된 태양열과 잘 일치하는 태양열 모델을 개발하였다. 기존의 태양열 모델은 태양 직사광 예측은 정확하지만 산란광에 대해서는 오차가 포함되어 있었다. 이에 반하여 새롭게 개발된 산란광 모델은 등방성, 이방성 산란을 고려하였으며 기존의 어느 모델보다 관측값과 잘 일치하였다. 우주 센터의 태양광 측정 데이터가 매우 적기 때문에 본 모델은 발사체 열하중 설계에 필요한 설계 데이터를 제공할 수 있었다. 또한 본 모델은 위도, 경도, 날짜, 고도에 대한 제한이 없는 일반적인 모델이기 때문에 추후 태양열에 민감한 반응을 보이는 비행기구 등의 개발에 효과적인 열환경 예측 수단을 제공할 수 있다.
Wisudhaputra, Adnan;Seo, Myeong Kwan;Yun, Byong Jo;Jeong, Jae Jun
Nuclear Engineering and Technology
/
제54권3호
/
pp.1126-1135
/
2022
The MARS code has been assessed for the prediction of onset of flow instability (OFI) in a vertical channel. For assessment, we built an experiment database that consists of experiments under various geometry and thermal-hydraulic condition. It covers pressure from 0.12 to 1.73 MPa; heat flux from 0.67 to 3.48 MW/m2; inlet sub-cooling from 39 to 166 ℃; hydraulic diameters between 2.37 and 6.45 mm of rectangular channels and pipes. It was shown that the MARS code can predict the OFI mass flux for pipes reasonably well. However, it could not predict the OFI in a rectangular channel well with a mean absolute percentage error of 8.77%. In the cases of rectangular channels, the error tends to depend on the hydraulic diameter. Because the OFI is directly related to the subcooled boiling in a flow channel, we suggest a modified subcooled boiling model for better prediction of OFI in a rectangular channel; the net vapor generation (NVG) model and the modified wall evaporation model were modified so that the effect of hydraulic diameter and heat flux can be accurately considered. The assessment of the modified model shows the prediction of OFI mass flux for rectangular channels is greatly improved.
The sawtooth skylight is an excellent daylighting concept for the uniform interior illuminance over large working areas. In computer simulation, it is difficult for an architect to get accurate daylight illuminances for the spaces where sawtooth apertures are applied. In this study, daylight prediction algorithms for sawtooth apertures are developed. The flux transfer method is applied for this study to predict daylight illuminances. The simplified equations from this study can be used effectively for preliminary prediction of daylight in sawtooth spaces.
Evaluation of turbulence models is performed for a better prediction of thermal stratification in an upper plenum of a liquid metal reactor by applying them to the experiment conducted at JNC. The turbulence models tested in the present study are the two-layer model, the $\kappa-\omega$ model, the v2-f model and the low-Reynolds number differential stress-flux model. When the algebraic flux model or differential flux model are used for treating the turbulent heat flux, there exist little differences between turbulence models in predicting the temporal variation of temperature. However, the v2-f model and the low-Reynolds number differential stress-flux model better predict the steep gradient o( temperature at the interface of thermal stratification, and only the v2-f model predicts properly the oscillation of temperature. The LES Is needed for a better prediction of the amplitude and frequency of the temperature fluctuation.
In this study a method to predict CHF(Critical heat flux) in vertical round tubes with axially non-uniform cosine heat flux distribution for water was examined. For this purpose a local condition hypothesis based CHF prediction correlation for uniform heat flux in vertical round tubes for water was developed from 9,366 CHF data points. The local correlation consisted of 4 local condition variables: the system pressure(P), tube diameter(D), mass flux of water(G), and 'true mass quality' of vapor($X_t$). The CHF data points used were collected from 13 different published sources having the following operation ranges: 1.01 ${\leq}$ P (pressure) ${\leq}$ 206.79 bar, 9.92${\leq}$ G (mass flux) ${\leq}$ 18,619.39 $kg/m^2s$, 0.00102 ${\leq}$ D(diameter) ${\leq}$ 0.04468 m, 0.0254${\leq}$ L (length) ${\leq}$ 4.966 m, 0.11 ${\leq}$ qc (CHF) ${\leq}$ 21.41 $MVW/m^2$, and -0.87 ${\leq}X_c$ (exit qualities) ${\leq}$ 1.58. The result of this work showed that a uniform CHF correlation can be easily extended to predict CHF in axially non-uniform heat flux heater. In addition, the location of the CHF in axially non-uniform tube can also be determined. The local uniform correlation predicted CHF in tubes with axially cosine heat flux profile within the root mean square error of 12.42% and average error of 1.06% for 297 CHF data points collected from 5 different published sources.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.